我正在通过JohnSnowLabs SpellChecker here。
我在那里找到了Norvig
的算法实现,示例部分只有以下两行:
import com.johnsnowlabs.nlp.annotator.NorvigSweetingModel
NorvigSweetingModel.pretrained()
如何在下面的数据框(df
)上应用此经过预训练的模型,以对“ names
”列进行拼写校正?
+----------------+---+------------+
| names|age| color|
+----------------+---+------------+
| [abc, cde]| 19| red, abc|
|[eefg, efa, efb]|192|efg, efz efz|
+----------------+---+------------+
我尝试按照以下步骤进行操作:
val schk = NorvigSweetingModel.pretrained().setInputCols("names").setOutputCol("Corrected")
val cdf = schk.transform(df)
但是上面的代码给了我以下错误:
java.lang.IllegalArgumentException: requirement failed: Wrong or missing inputCols annotators in SPELL_a1f11bacb851. Received inputCols: names. Make sure such columns have following annotator types: token
at scala.Predef$.require(Predef.scala:224)
at com.johnsnowlabs.nlp.AnnotatorModel.transform(AnnotatorModel.scala:51)
... 49 elided
答案 0 :(得分:2)
spark-nlp
旨在用于其自己的特定管道中,并且不同转换器的输入列必须包含特殊的元数据。
该异常已经告诉您NorvigSweetingModel
的输入应被标记化:
确保此类列具有以下注释器类型:令牌
如果我没记错的话,至少您将在此处汇编文件并标记化。
import com.johnsnowlabs.nlp.DocumentAssembler
import com.johnsnowlabs.nlp.annotator.NorvigSweetingModel
import com.johnsnowlabs.nlp.annotators.Tokenizer
import org.apache.spark.ml.Pipeline
val df = Seq(Seq("abc", "cde"), Seq("eefg", "efa", "efb")).toDF("names")
val nlpPipeline = new Pipeline().setStages(Array(
new DocumentAssembler().setInputCol("names").setOutputCol("document"),
new Tokenizer().setInputCols("document").setOutputCol("tokens"),
NorvigSweetingModel.pretrained().setInputCols("tokens").setOutputCol("corrected")
))
这样的Pipeline
可以稍作调整就可以应用到您的数据上-输入数据必须为string
而不是array<string>
*:
val result = df
.transform(_.withColumn("names", concat_ws(" ", $"names")))
.transform(df => nlpPipeline.fit(df).transform(df))
result.show()
+------------+--------------------+--------------------+--------------------+
| names| document| tokens| corrected|
+------------+--------------------+--------------------+--------------------+
| abc cde|[[document, 0, 6,...|[[token, 0, 2, ab...|[[token, 0, 2, ab...|
|eefg efa efb|[[document, 0, 11...|[[token, 0, 3, ee...|[[token, 0, 3, ee...|
+------------+--------------------+--------------------+--------------------+
如果您希望输出可以导出,则应将Pipeline
扩展为Finisher
。
import com.johnsnowlabs.nlp.Finisher
new Finisher().setInputCols("corrected").transform(result).show
+------------+------------------+
| names|finished_corrected|
+------------+------------------+
| abc cde| [abc, cde]|
|eefg efa efb| [eefg, efa, efb]|
+------------+------------------+
*根据the docs DocumentAssembler
可以读取String列或Array [String]
但是在1.7.3的实践中看起来并不可行:
df.transform(df => nlpPipeline.fit(df).transform(df)).show()
org.apache.spark.sql.AnalysisException: cannot resolve 'UDF(names)' due to data type mismatch: argument 1 requires string type, however, '`names`' is of array<string> type.;;
'Project [names#62, UDF(names#62) AS document#343]
+- AnalysisBarrier
+- Project [value#60 AS names#62]
+- LocalRelation [value#60]