如何使用JohnSnowLabs NLP拼写校正模块NorvigSweetingModel?

时间:2018-11-21 18:15:40

标签: scala apache-spark nlp apache-spark-ml johnsnowlabs-spark-nlp

我正在通过JohnSnowLabs SpellChecker here

我在那里找到了Norvig的算法实现,示例部分只有以下两行:

import com.johnsnowlabs.nlp.annotator.NorvigSweetingModel
NorvigSweetingModel.pretrained()

如何在下面的数据框(df)上应用此经过预训练的模型,以对“ names”列进行拼写校正?

+----------------+---+------------+
|           names|age|       color|
+----------------+---+------------+
|      [abc, cde]| 19|    red, abc|
|[eefg, efa, efb]|192|efg, efz efz|
+----------------+---+------------+

我尝试按照以下步骤进行操作:

val schk = NorvigSweetingModel.pretrained().setInputCols("names").setOutputCol("Corrected")

val cdf = schk.transform(df)

但是上面的代码给了我以下错误:

java.lang.IllegalArgumentException: requirement failed: Wrong or missing inputCols annotators in SPELL_a1f11bacb851. Received inputCols: names. Make sure such columns have following annotator types: token
  at scala.Predef$.require(Predef.scala:224)
  at com.johnsnowlabs.nlp.AnnotatorModel.transform(AnnotatorModel.scala:51)
  ... 49 elided

1 个答案:

答案 0 :(得分:2)

spark-nlp旨在用于其自己的特定管道中,并且不同转换器的输入列必须包含特殊的元数据。

该异常已经告诉您NorvigSweetingModel的输入应被标记化:

  

确保此类列具有以下注释器类型:令牌

如果我没记错的话,至少您将在此处汇编文件并标记化。

import com.johnsnowlabs.nlp.DocumentAssembler
import com.johnsnowlabs.nlp.annotator.NorvigSweetingModel
import com.johnsnowlabs.nlp.annotators.Tokenizer
import org.apache.spark.ml.Pipeline

val df = Seq(Seq("abc", "cde"), Seq("eefg", "efa", "efb")).toDF("names")

val nlpPipeline = new Pipeline().setStages(Array(
  new DocumentAssembler().setInputCol("names").setOutputCol("document"),
  new Tokenizer().setInputCols("document").setOutputCol("tokens"),
  NorvigSweetingModel.pretrained().setInputCols("tokens").setOutputCol("corrected")
))

这样的Pipeline可以稍作调整就可以应用到您的数据上-输入数据必须为string而不是array<string> *:

val result = df
  .transform(_.withColumn("names", concat_ws(" ", $"names")))
  .transform(df => nlpPipeline.fit(df).transform(df))
result.show()
+------------+--------------------+--------------------+--------------------+
|       names|            document|              tokens|           corrected|
+------------+--------------------+--------------------+--------------------+
|     abc cde|[[document, 0, 6,...|[[token, 0, 2, ab...|[[token, 0, 2, ab...|
|eefg efa efb|[[document, 0, 11...|[[token, 0, 3, ee...|[[token, 0, 3, ee...|
+------------+--------------------+--------------------+--------------------+

如果您希望输出可以导出,则应将Pipeline扩展为Finisher

import com.johnsnowlabs.nlp.Finisher

new Finisher().setInputCols("corrected").transform(result).show
 +------------+------------------+
 |       names|finished_corrected|
 +------------+------------------+
 |     abc cde|        [abc, cde]|
 |eefg efa efb|  [eefg, efa, efb]|
 +------------+------------------+

*根据the docs DocumentAssembler

  

可以读取String列或Array [String]

但是在1.7.3的实践中看起来并不可行:

df.transform(df => nlpPipeline.fit(df).transform(df)).show()
org.apache.spark.sql.AnalysisException: cannot resolve 'UDF(names)' due to data type mismatch: argument 1 requires string type, however, '`names`' is of array<string> type.;;
'Project [names#62, UDF(names#62) AS document#343]
+- AnalysisBarrier
      +- Project [value#60 AS names#62]
         +- LocalRelation [value#60]