我正在尝试将本地目录内容流式传输到HDFS。此本地目录将通过脚本进行修改,并且内容每5秒添加一次。我的spark程序将流处理此本地目录的内容并将其保存到HDFS。但是,当我开始流式传输时,没有任何反应。 我检查了日志,但没有得到提示。
让我解释一下情况。 Shell脚本会每5秒在本地目录中移动一个包含一些数据的文件。流上下文的持续时间对象也是5秒。当脚本移动一个新文件时,如果我没有记错的话,这里会保留原子性。每五秒钟,接收者将处理数据并创建一个Dstream对象。我刚刚搜索了流本地目录,发现该路径应以“ file:/// my / path”的形式提供。我没有尝试过这种格式。但是,如果是这种情况,那么节点的火花执行程序将如何维护所提供的本地路径的公共状态?
import org.apache.spark._
import org.apache.spark.streaming._
val ssc = new StreamingContext(sc, Seconds(5))
val filestream = ssc.textFileStream("/home/karteekkhadoop/ch06input")
import java.sql.Timestamp
case class Order(time: java.sql.Timestamp, orderId:Long, clientId:Long, symbol:String, amount:Int, price:Double, buy:Boolean)
import java.text.SimpleDateFormat
val orders = filestream.flatMap(line => {
val dateFormat = new SimpleDateFormat("yyyy-MM-dd hh:mm:ss")
var s = line.split(",")
try {
assert(s(6) == "B" || s(6) == "S")
List(Order(new Timestamp(dateFormat.parse(s(0)).getTime()), s(1).toLong, s(2).toLong, s(3), s(4).toInt, s(5).toDouble, s(6)=="B"))
}catch{
case e: Throwable => println("Wrong line format("+e+") : " + line)
List()
}
})
val numPerType = orders.map(o => (o.buy, 1L)).reduceByKey((x,y) => x+y)
numPerType.repartition(1).saveAsTextFiles("/user/karteekkhadoop/ch06output/output", "txt")
ssc.awaitTermination()
给出的路径是绝对路径,并且存在。我还包括以下日志。
[karteekkhadoop@gw03 stream]$ yarn logs -applicationId application_1540458187951_12531
18/11/21 11:12:35 INFO client.RMProxy: Connecting to ResourceManager at rm01.itversity.com/172.16.1.106:8050
18/11/21 11:12:35 INFO client.AHSProxy: Connecting to Application History server at rm01.itversity.com/172.16.1.106:10200
Container: container_e42_1540458187951_12531_01_000001 on wn02.itversity.com:45454
LogAggregationType: LOCAL
==================================================================================
LogType:stderr
LogLastModifiedTime:Wed Nov 21 10:52:00 -0500 2018
LogLength:5320
LogContents:
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/hdp01/hadoop/yarn/local/filecache/2693/spark2-hdp-yarn-archive.tar.gz/slf4j-log4j12-1.7.16.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/hdp/2.6.5.0-292/hadoop/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
18/11/21 10:51:57 INFO SignalUtils: Registered signal handler for TERM
18/11/21 10:51:57 INFO SignalUtils: Registered signal handler for HUP
18/11/21 10:51:57 INFO SignalUtils: Registered signal handler for INT
18/11/21 10:51:57 INFO SecurityManager: Changing view acls to: yarn,karteekkhadoop
18/11/21 10:51:57 INFO SecurityManager: Changing modify acls to: yarn,karteekkhadoop
18/11/21 10:51:57 INFO SecurityManager: Changing view acls groups to:
18/11/21 10:51:57 INFO SecurityManager: Changing modify acls groups to:
18/11/21 10:51:57 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(yarn, karteekkhadoop); groups with view permissions: Set(); users with modify permissions: Set(yarn, karteekkhadoop); groups with modify permissions: Set()
18/11/21 10:51:58 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
18/11/21 10:51:58 INFO ApplicationMaster: Preparing Local resources
18/11/21 10:51:59 WARN DomainSocketFactory: The short-circuit local reads feature cannot be used because libhadoop cannot be loaded.
18/11/21 10:51:59 INFO ApplicationMaster: ApplicationAttemptId: appattempt_1540458187951_12531_000001
18/11/21 10:51:59 INFO ApplicationMaster: Waiting for Spark driver to be reachable.
18/11/21 10:51:59 INFO ApplicationMaster: Driver now available: gw03.itversity.com:38932
18/11/21 10:51:59 INFO TransportClientFactory: Successfully created connection to gw03.itversity.com/172.16.1.113:38932 after 90 ms (0 ms spent in bootstraps)
18/11/21 10:51:59 INFO ApplicationMaster:
===============================================================================
YARN executor launch context:
env:
CLASSPATH -> {{PWD}}<CPS>{{PWD}}/__spark_conf__<CPS>{{PWD}}/__spark_libs__/*<CPS>/usr/hdp/2.6.5.0-292/hadoop/conf<CPS>/usr/hdp/2.6.5.0-292/hadoop/*<CPS>/usr/hdp/2.6.5.0-292/hadoop/lib/*<CPS>/usr/hdp/current/hadoop-hdfs-client/*<CPS>/usr/hdp/current/hadoop-hdfs-client/lib/*<CPS>/usr/hdp/current/hadoop-yarn-client/*<CPS>/usr/hdp/current/hadoop-yarn-client/lib/*<CPS>/usr/hdp/current/ext/hadoop/*<CPS>$PWD/mr-framework/hadoop/share/hadoop/mapreduce/*:$PWD/mr-framework/hadoop/share/hadoop/mapreduce/lib/*:$PWD/mr-framework/hadoop/share/hadoop/common/*:$PWD/mr-framework/hadoop/share/hadoop/common/lib/*:$PWD/mr-framework/hadoop/share/hadoop/yarn/*:$PWD/mr-framework/hadoop/share/hadoop/yarn/lib/*:$PWD/mr-framework/hadoop/share/hadoop/hdfs/*:$PWD/mr-framework/hadoop/share/hadoop/hdfs/lib/*:$PWD/mr-framework/hadoop/share/hadoop/tools/lib/*:/usr/hdp/2.6.5.0-292/hadoop/lib/hadoop-lzo-0.6.0.2.6.5.0-292.jar:/etc/hadoop/conf/secure:/usr/hdp/current/ext/hadoop/*<CPS>{{PWD}}/__spark_conf__/__hadoop_conf__
SPARK_YARN_STAGING_DIR -> *********(redacted)
SPARK_USER -> *********(redacted)
command:
LD_LIBRARY_PATH="/usr/hdp/current/hadoop-client/lib/native:/usr/hdp/current/hadoop-client/lib/native/Linux-amd64-64:$LD_LIBRARY_PATH" \
{{JAVA_HOME}}/bin/java \
-server \
-Xmx1024m \
-Djava.io.tmpdir={{PWD}}/tmp \
'-Dspark.history.ui.port=18081' \
'-Dspark.driver.port=38932' \
'-Dspark.port.maxRetries=100' \
-Dspark.yarn.app.container.log.dir=<LOG_DIR> \
-XX:OnOutOfMemoryError='kill %p' \
org.apache.spark.executor.CoarseGrainedExecutorBackend \
--driver-url \
spark://CoarseGrainedScheduler@gw03.itversity.com:38932 \
--executor-id \
<executorId> \
--hostname \
<hostname> \
--cores \
1 \
--app-id \
application_1540458187951_12531 \
--user-class-path \
file:$PWD/__app__.jar \
1><LOG_DIR>/stdout \
2><LOG_DIR>/stderr
resources:
__spark_libs__ -> resource { scheme: "hdfs" host: "nn01.itversity.com" port: 8020 file: "/hdp/apps/2.6.5.0-292/spark2/spark2-hdp-yarn-archive.tar.gz" } size: 202745446 timestamp: 1533325894570 type: ARCHIVE visibility: PUBLIC
__spark_conf__ -> resource { scheme: "hdfs" host: "nn01.itversity.com" port: 8020 file: "/user/karteekkhadoop/.sparkStaging/application_1540458187951_12531/__spark_conf__.zip" } size: 248901 timestamp: 1542815515889 type: ARCHIVE visibility: PRIVATE
===============================================================================
18/11/21 10:51:59 INFO RMProxy: Connecting to ResourceManager at rm01.itversity.com/172.16.1.106:8030
18/11/21 10:51:59 INFO YarnRMClient: Registering the ApplicationMaster
18/11/21 10:51:59 INFO Utils: Using initial executors = 0, max of spark.dynamicAllocation.initialExecutors, spark.dynamicAllocation.minExecutors and spark.executor.instances
18/11/21 10:52:00 INFO ApplicationMaster: Started progress reporter thread with (heartbeat : 3000, initial allocation : 200) intervals
End of LogType:stderr.This log file belongs to a running container (container_e42_1540458187951_12531_01_000001) and so may not be complete.
代码有什么问题。请帮忙。谢谢。
答案 0 :(得分:0)
您不能使用本地目录。与任何Spark阅读器一样,必须从每个节点(驱动程序和执行程序)访问输入(和输出)存储,并且所有节点必须看到完全相同的状态。
另外请记住,对于文件系统源,对文件的更改必须是原子的(例如文件系统移动),并且非原子的操作(例如附加到文件)将不起作用。