我正在尝试将Tensorflow图转换为使用自定义的tensorflow估计器,但是我陷入了为input_fn
定义函数的过程;我目前遇到错误。
这是我用来生成输入数据和标签的功能
data_index = 0
epoch_index = 0
recEpoch_indexA = 0 #Used to help keep store of the total number of epoches with the models
def generate_batch(batch_size, inputCount):
global data_index, epoch_index
batch = np.ndarray(shape=(batch_size, inputCount), dtype=np.int32)
labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32)
n=0
while n < batch_size:
if len( set(my_data[data_index, 1]) ) >= inputCount:
labels[n,0] = my_data[data_index, 0]
batch[n] = random.sample( set(my_data[data_index, 1]), inputCount)
n = n+1
data_index = (data_index + 1) % len(my_data) #may have to do something like len my_data[:]
if data_index == 0:
epoch_index = epoch_index + 1
print('Completed %d Epochs' % epoch_index)
else:
data_index = (data_index + 1) % len(my_data)
if data_index == 0:
epoch_index = epoch_index + 1
print('Completed %d Epochs' % epoch_index)
return batch, labels
这是我定义估算器并尝试进行训练的地方
#Define the estimator
word2vecEstimator = tf.estimator.Estimator(
model_fn=my_model,
params={
'batch_size': 1024,
'embedding_size': 50,
'num_inputs': 5,
'num_sampled':128
})
batch_size = 16
num_inputs = 3
#Train with Estimator
word2vecEstimator.train(
input_fn=generate_batch(batch_size, num_inputs),
steps=10)
这是我收到的错误消息
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
/usr/lib/python3.6/inspect.py in getfullargspec(func)
1118 skip_bound_arg=False,
-> 1119 sigcls=Signature)
1120 except Exception as ex:
/usr/lib/python3.6/inspect.py in _signature_from_callable(obj, follow_wrapper_chains, skip_bound_arg, sigcls)
2185 if not callable(obj):
-> 2186 raise TypeError('{!r} is not a callable object'.format(obj))
2187
TypeError: (array([[1851833, 670357, 343012],
[ 993526, 431296, 935528],
[ 938067, 1155719, 2277388],
[ 534965, 1125669, 1665716],
[1412657, 2152211, 1176177],
[ 268114, 2097642, 2707258],
[1280762, 1516464, 453615],
[2545980, 2302607, 2421182],
[1706260, 2735027, 292652],
[1802025, 2949676, 653015],
[ 854228, 2626773, 225486],
[1747135, 1608478, 2503487],
[1326661, 272883, 2089444],
[3082922, 1359481, 621031],
[2636832, 1842777, 1979638],
[2512269, 1617986, 389356]], dtype=int32), array([[1175598],
[2528125],
[1870906],
[ 643521],
[2349752],
[ 754986],
[2277570],
[2121120],
[2384306],
[1881398],
[3046987],
[2505729],
[2908573],
[2438025],
[ 441422],
[2355625]], dtype=int32)) is not a callable object
The above exception was the direct cause of the following exception:
TypeError Traceback (most recent call last)
<ipython-input-15-7acc939af001> in <module>()
5 word2vecEstimator.train(
6 input_fn=generate_batch(batch_size, num_inputs),
----> 7 steps=10)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/estimator/estimator.py in train(self, input_fn, hooks, steps, max_steps, saving_listeners)
352
353 saving_listeners = _check_listeners_type(saving_listeners)
--> 354 loss = self._train_model(input_fn, hooks, saving_listeners)
355 logging.info('Loss for final step: %s.', loss)
356 return self
/usr/local/lib/python3.6/dist-packages/tensorflow/python/estimator/estimator.py in _train_model(self, input_fn, hooks, saving_listeners)
1205 return self._train_model_distributed(input_fn, hooks, saving_listeners)
1206 else:
-> 1207 return self._train_model_default(input_fn, hooks, saving_listeners)
1208
1209 def _train_model_default(self, input_fn, hooks, saving_listeners):
/usr/local/lib/python3.6/dist-packages/tensorflow/python/estimator/estimator.py in _train_model_default(self, input_fn, hooks, saving_listeners)
1232 features, labels, input_hooks = (
1233 self._get_features_and_labels_from_input_fn(
-> 1234 input_fn, model_fn_lib.ModeKeys.TRAIN))
1235 worker_hooks.extend(input_hooks)
1236 estimator_spec = self._call_model_fn(
/usr/local/lib/python3.6/dist-packages/tensorflow/python/estimator/estimator.py in _get_features_and_labels_from_input_fn(self, input_fn, mode)
1073 """Extracts the `features` and labels from return values of `input_fn`."""
1074 return estimator_util.parse_input_fn_result(
-> 1075 self._call_input_fn(input_fn, mode))
1076
1077 def _extract_batch_length(self, preds_evaluated):
/usr/local/lib/python3.6/dist-packages/tensorflow/python/estimator/estimator.py in _call_input_fn(self, input_fn, mode)
1151 ValueError: if `input_fn` takes invalid arguments.
1152 """
-> 1153 input_fn_args = function_utils.fn_args(input_fn)
1154 kwargs = {}
1155 if 'mode' in input_fn_args:
/usr/local/lib/python3.6/dist-packages/tensorflow/python/util/function_utils.py in fn_args(fn)
54 if _is_callable_object(fn):
55 fn = fn.__call__
---> 56 args = tf_inspect.getfullargspec(fn).args
57 if _is_bounded_method(fn):
58 args.remove('self')
/usr/local/lib/python3.6/dist-packages/tensorflow/python/util/tf_inspect.py in getfullargspec(obj)
214 return next((d.decorator_argspec
215 for d in decorators
--> 216 if d.decorator_argspec is not None), _getfullargspec(target))
217
218
/usr/lib/python3.6/inspect.py in getfullargspec(func)
1123 # else. So to be fully backwards compatible, we catch all
1124 # possible exceptions here, and reraise a TypeError.
-> 1125 raise TypeError('unsupported callable') from ex
1126
1127 args = []
TypeError: unsupported callable
这里是Google Colab笔记本的链接,人们可以自己运行。对于希望执行此操作的任何人,这将下载约500 mbs的数据文件。
https://colab.research.google.com/drive/1LjIz04xhRi5Fsw_Q3IzoG_5KkkXI3WFE
这是笔记本的完整代码。
import math
import numpy as np
import random
import zipfile
import shutil
from collections import namedtuple
import os
import pprint
import tensorflow as tf
import pandas as pd
import pickle
from numpy import genfromtxt
!pip install -U -q PyDrive
from google.colab import files
from pydrive.auth import GoogleAuth
from pydrive.drive import GoogleDrive
from google.colab import auth
from oauth2client.client import GoogleCredentials
auth.authenticate_user()
gauth = GoogleAuth()
gauth.credentials = GoogleCredentials.get_application_default()
drive = GoogleDrive(gauth)
vocabulary_size = 3096637 #updated 10-25-18 3096636
import gc
dl_id = '19yha9Scxq4zOdfPcw5s6L2lkYQWenApC' #updated 10-22-18
myDownload = drive.CreateFile({'id': dl_id})
myDownload.GetContentFile('Data.npy')
my_data = np.load('Data.npy')
#os.remove('Data.npy')
np.random.shuffle(my_data)
print(my_data[0:15])
data_index = 0
epoch_index = 0
recEpoch_indexA = 0 #Used to help keep store of the total number of epoches with the models
def generate_batch(batch_size, inputCount):
global data_index, epoch_index
batch = np.ndarray(shape=(batch_size, inputCount), dtype=np.int32)
labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32)
n=0
while n < batch_size:
if len( set(my_data[data_index, 1]) ) >= inputCount:
labels[n,0] = my_data[data_index, 0]
batch[n] = random.sample( set(my_data[data_index, 1]), inputCount)
n = n+1
data_index = (data_index + 1) % len(my_data) #may have to do something like len my_data[:]
if data_index == 0:
epoch_index = epoch_index + 1
print('Completed %d Epochs' % epoch_index)
else:
data_index = (data_index + 1) % len(my_data)
if data_index == 0:
epoch_index = epoch_index + 1
print('Completed %d Epochs' % epoch_index)
return batch, labels
def my_model( features, labels, mode, params):
# train_dataset = tf.placeholder(tf.int32, shape=[batch_size, num_inputs ])
# train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
train_dataset = features
train_labels = labels
batch_sizeE=params["batch_size"]
embedding_sizeE=params["embedding_size"]
num_inputsE=params["num_inputs"]
num_sampledE=params["num_sampled"]
epochCount = tf.get_variable( 'epochCount', initializer= 0) #to store epoch count to total # of epochs are known
update_epoch = tf.assign(epochCount, epochCount + 1)
embeddings = tf.get_variable( 'embeddings', dtype=tf.float32,
initializer= tf.random_uniform([vocabulary_size, embedding_sizeE], -1.0, 1.0, dtype=tf.float32) )
softmax_weights = tf.get_variable( 'softmax_weights', dtype=tf.float32,
initializer= tf.truncated_normal([vocabulary_size, embedding_sizeE],
stddev=1.0 / math.sqrt(embedding_sizeE), dtype=tf.float32 ) )
softmax_biases = tf.get_variable('softmax_biases', dtype=tf.float32,
initializer= tf.zeros([vocabulary_size], dtype=tf.float32), trainable=False )
embed = tf.nn.embedding_lookup(embeddings, train_dataset) #train data set is
embed_reshaped = tf.reshape( embed, [batch_sizeE*num_inputs, embedding_sizeE] )
segments= np.arange(batch_size).repeat(num_inputs)
averaged_embeds = tf.segment_mean(embed_reshaped, segments, name=None)
loss = tf.reduce_mean(
tf.nn.sampled_softmax_loss(weights=softmax_weights, biases=softmax_biases, inputs=averaged_embeds,
sampled_values=tf.nn.uniform_candidate_sampler(true_classes=tf.cast(train_labels, tf.int64), num_sampled=num_sampled, num_true=1, unique=True, range_max=vocabulary_size, seed=None),
labels=train_labels, num_sampled=num_sampled, num_classes=vocabulary_size))
optimizer = tf.train.AdagradOptimizer(1.0).minimize(loss)
saver = tf.train.Saver()
#Define the estimator
word2vecEstimator = tf.estimator.Estimator(
model_fn=my_model,
params={
'batch_size': 1024,
'embedding_size': 50,
'num_inputs': 5,
'num_sampled':128
})
batch_size = 16
num_inputs = 3
#Train with Estimator
word2vecEstimator.train(
input_fn=generate_batch(batch_size, num_inputs),
steps=10)
答案 0 :(得分:1)
无法纠正此功能,因为永远无法使用Tensorflow来实现。 input_fn()函数必须返回张量,而不是numpy数组,因为input_fn()是构造图的函数,在构建图时可能只调用一次。在这种情况下,numpy数组只是一个常量值。看起来很奇怪,但这是事实。您需要了解Tensorflow的机制:静态计算图!
答案 1 :(得分:0)