我的问题如下:
Table 1
ID1 ID2
1 2
3 4
Table 2
C1 VALUE
1 London
4 Texas
Table3
C3 VALUE
2 Paris
3 Arizona
表1具有主要和次要ID。我需要创建一个最终输出,该输出是基于来自table1的ID映射的Table2和Table3的值的汇总。
即,如果将table2或table3中的值映射到任一ID,则应将其汇总为一个。
i.e my final output should look like:
ID Aggregated
1 [2, London, Paris] // since Paris is mapped to 2 which is turn is mapped to 1
3 [4, Texas, Arizona] // Texas is mapped to 4 which in turn is mapped to 3
任何建议如何在pyspark中实现这一目标。
我不确定加入表格是否可以解决此问题。
我本以为PairedRDD可能会对此有所帮助,但是我无法提出适当的解决方案。
谢谢
答案 0 :(得分:0)
下面是一个非常简单的方法:
spark.sql(
"""
select 1 as id1,2 as id2
union
select 3 as id1,4 as id2
""").createOrReplaceTempView("table1")
spark.sql(
"""
select 1 as c1, 'london' as city
union
select 4 as c1, 'texas' as city
""").createOrReplaceTempView("table2")
spark.sql(
"""
select 2 as c1, 'paris' as city
union
select 3 as c1, 'arizona' as city
""").createOrReplaceTempView("table3")
spark.table("table1").show()
spark.table("table2").show()
spark.table("table3").show()
# for simplicity, union table2 and table 3
spark.sql(""" select * from table2 union all select * from table3 """).createOrReplaceTempView("city_mappings")
spark.table("city_mappings").show()
# now join to the ids:
spark.sql("""
select id1, id2, city from table1
join city_mappings on c1 = id1 or c1 = id2
""").createOrReplaceTempView("id_to_city")
# and finally you can aggregate:
spark.sql("""
select id1, id2, collect_list(city)
from id_to_city
group by id1, id2
""").createOrReplaceTempView("result")
table("result").show()
# result looks like this, you can reshape to better suit your needs :
+---+---+------------------+
|id1|id2|collect_list(city)|
+---+---+------------------+
| 1| 2| [london, paris]|
| 3| 4| [texas, arizona]|
+---+---+------------------+