我正在尝试遵循simple tutorial,以了解如何使用预先训练的VGG模型进行图像分类。我拥有的代码:
from keras.applications.vgg16 import VGG16
from keras.preprocessing.image import load_img, img_to_array
from keras.applications.vgg16 import preprocess_input, decode_predictions
import numpy as np
class KerasModel(object):
def __init__(self):
self.model = VGG16()
def evaluate(self):
image = load_img('mug.jpg', target_size=(224,224))
image = img_to_array(image)
image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2]))
image = preprocess_input(image)
yhat = self.model.predict(image)
label = decode_predictions(yhat)
label = label[0][0]
return ('%s (%.2f%%)' % (label[1]), label[2]*100)
这会导致错误:Tensor Tensor(“ predictions / Softmax:0”,shape =(?, 1000),dtype = float32)不是此图的元素。
搜索此错误后,我得到了以下代码:
from keras.applications.vgg16 import VGG16
from keras.preprocessing.image import load_img, img_to_array
from keras.applications.vgg16 import preprocess_input, decode_predictions
import numpy as np
import tensorflow as tf
graph = tf.get_default_graph()
class KerasModel(object):
def __init__(self):
self.model = VGG16()
def evaluate(self):
image = load_img('mug.jpg', target_size=(224,224))
image = img_to_array(image)
image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2]))
image = preprocess_input(image)
with graph.as_default():
yhat = self.model.predict(image)
label = decode_predictions(yhat)
label = label[0][0]
return ('%s (%.2f%%)' % (label[1]), label[2]*100)
但这仍然会导致相同的错误。有人可以帮我吗?我不明白自己在做什么错,因为该教程似乎适合所有人。
模型摘要:
_________________________________________________________________
xvision | Layer (type) Output Shape Param #
xvision | =================================================================
xvision | input_1 (InputLayer) (None, 224, 224, 3) 0
xvision | _________________________________________________________________
xvision | block1_conv1 (Conv2D) (None, 224, 224, 64) 1792
xvision | _________________________________________________________________
xvision | block1_conv2 (Conv2D) (None, 224, 224, 64) 36928
xvision | _________________________________________________________________
xvision | block1_pool (MaxPooling2D) (None, 112, 112, 64) 0
xvision | _________________________________________________________________
xvision | block2_conv1 (Conv2D) (None, 112, 112, 128) 73856
xvision | _________________________________________________________________
xvision | block2_conv2 (Conv2D) (None, 112, 112, 128) 147584
xvision | _________________________________________________________________
xvision | block2_pool (MaxPooling2D) (None, 56, 56, 128) 0
xvision | _________________________________________________________________
xvision | block3_conv1 (Conv2D) (None, 56, 56, 256) 295168
xvision | _________________________________________________________________
xvision | block3_conv2 (Conv2D) (None, 56, 56, 256) 590080
xvision | _________________________________________________________________
xvision | block3_conv3 (Conv2D) (None, 56, 56, 256) 590080
xvision | _________________________________________________________________
xvision | block3_pool (MaxPooling2D) (None, 28, 28, 256) 0
xvision | _________________________________________________________________
xvision | block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160
xvision | _________________________________________________________________
xvision | block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808
xvision | _________________________________________________________________
xvision | block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808
xvision | _________________________________________________________________
xvision | block4_pool (MaxPooling2D) (None, 14, 14, 512) 0
xvision | _________________________________________________________________
xvision | block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808
xvision | _________________________________________________________________
xvision | block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808
xvision | _________________________________________________________________
xvision | block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808
xvision | _________________________________________________________________
xvision | block5_pool (MaxPooling2D) (None, 7, 7, 512) 0
xvision | _________________________________________________________________
xvision | flatten (Flatten) (None, 25088) 0
xvision | _________________________________________________________________
xvision | fc1 (Dense) (None, 4096) 102764544
xvision | _________________________________________________________________
xvision | fc2 (Dense) (None, 4096) 16781312
xvision | _________________________________________________________________
xvision | predictions (Dense) (None, 1000) 4097000
xvision | =================================================================
xvision | Total params: 138,357,544
xvision | Trainable params: 138,357,544
xvision | Non-trainable params: 0
xvision | _________________________________________________________________
xvision | None
答案 0 :(得分:1)
由于您的代码很好,因此在干净的环境中运行应该可以解决它。
清除~/.keras/
上的keras缓存
使用正确的软件包在新环境中运行(可以使用anaconda轻松完成)
确保您处于全新的会话中,keras.backend.clear_session()
应该删除所有现有的tf图。
答案 1 :(得分:0)
似乎Keras不是线程安全的,因此您需要在每个线程中初始化模型。修复程序正在调用:_make_predict_function()
它确实为我工作。这是一个干净的示例:
from keras.models import load_model
def load_model():
model = load_model('./my_model.h5')
model._make_predict_function()
print('model loaded') # just to keep track in your server
return model
希望这会有所帮助。