我是神经网络的重要人物, 跑步时出现以下错误
ValueError:检查目标时出错:预期conv2d_1具有形状(64,222,222)但具有形状(1,224,224)的数组
据我所知,我使用灰度图像,我认为我正在正确调整输入的形状。 我无法理解我在做什么。
这是网络的摘录
网络模型:
select * from tablename a
where created_at in
(select max(created_at) from tablename b where a.user_id=b.user_id)
order by points desc limit 50
读取数据:
def convLayer(channels):
return
Conv2D(channels,kernel_size=3,activation='relu',\
kernel_initializer=initializers.random_normal(mean=0.0, stddev=0.01),\
data_format='channels_first')
class est_net():
def __init__(self, input=None):
if input is None:
input=Input(shape=(1,224,224))
self.input=input
conv1_1 = convLayer(64)(self.input)
self.output = conv1_1
self.CDECNN = Model(inputs=self.input, outputs=self.output)
print(self.CDECNN.summary())
培训:
def __iter__(self):
files=self.img_files
for f in files:
if f==".DS_Store":
continue
img=cv2.imread(os.path.join(self.img_path,f),cv2.COLOR_BGR2GRAY)
img=img.reshape(1, img.shape[0], img.shape[1])
if img is None:
print("unable to read image %s." % f)
exit(0)
gt_file='GT_'+f.split('.')[0]+'.mat'
gt=sio.loadmat(os.path.join(self.gt_path,gt_file))['d_map']
gt=gt.reshape(1, gt.shape[0], gt.shape[1])
yield(img,gt)