我想使用行索引按不均匀的行数拆分数据帧。
以下代码:
groups = df.groupby((np.arange(len(df.index))/l[1]).astype(int))
仅适用于一致的行数。
df
a b c
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
l = [2, 5, 7]
df1
1 1 1
2 2 2
df2
3,3,3
4,4,4
5,5,5
df3
6,6,6
7,7,7
df4
8,8,8
答案 0 :(得分:6)
您可以先使用列表理解功能,然后再使用一些药物,例如l。
print(df)
a b c
0 1 1 1
1 2 2 2
2 3 3 3
3 4 4 4
4 5 5 5
5 6 6 6
6 7 7 7
7 8 8 8
l = [2,5,7]
l_mod = [0] + l + [max(l)+1]
list_of_dfs = [df.iloc[l_mod[n]:l_mod[n+1]] for n in range(len(l_mod)-1)]
输出:
list_of_dfs[0]
a b c
0 1 1 1
1 2 2 2
list_of_dfs[1]
a b c
2 3 3 3
3 4 4 4
4 5 5 5
list_of_dfs[2]
a b c
5 6 6 6
6 7 7 7
list_of_dfs[3]
a b c
7 8 8 8
答案 1 :(得分:0)
我认为这是您正在寻找的东西。
l = [2, 5, 7]
dfs=[]
i=0
for val in l:
if i==0:
temp=df.iloc[:val]
dfs.append(temp)
elif i==len(l):
temp=df.iloc[val]
dfs.append(temp)
else:
temp=df.iloc[l[i-1]:val]
dfs.append(temp)
i+=1
输出:
a b c
0 1 1 1
1 2 2 2
a b c
2 3 3 3
3 4 4 4
4 5 5 5
a b c
5 6 6 6
6 7 7 7
另一种解决方案:
l = [2, 5, 7]
t= np.arange(l[-1])
l.reverse()
for val in l:
t[:val]=val
temp=pd.DataFrame(t)
temp=pd.concat([df,temp],axis=1)
for u,v in temp.groupby(0):
print v
输出:
a b c 0
0 1 1 1 2
1 2 2 2 2
a b c 0
2 3 3 3 5
3 4 4 4 5
4 5 5 5 5
a b c 0
5 6 6 6 7
6 7 7 7 7
答案 2 :(得分:0)
执行以下操作:
l = [2,5,7]
c = 0
d = dict() # A dictionary to hold multiple dataframes
In [477]: for i in l:
...: if c == 0:
...: index_list = df[df.a <= i].index
...: else:
...: index_list = df[(df.a > l[c-1]) & (df.a <= l[c])].index
...: min_index = index_list[0]
...: max_index = index_list[-1] + 1
...: d[i] = df.iloc[min_index:max_index]
...: c += 1
...:
In [479]: for key in d.keys():
...: print(d[key])
...:
a b c
0 1 1 1
1 2 2 2
a b c
2 3 3 3
3 4 4 4
4 5 5 5
a b c
5 6 6 6
6 7 7 7
答案 3 :(得分:0)
您可以通过NumPy创建用于索引的数组:
import pandas as pd, numpy as np
df = pd.DataFrame(np.arange(24).reshape((8, 3)), columns=list('abc'))
L = [2, 5, 7]
idx = np.cumsum(np.in1d(np.arange(len(df.index)), L))
for _, chunk in df.groupby(idx):
print(chunk, '\n')
a b c
0 0 1 2
1 3 4 5
a b c
2 6 7 8
3 9 10 11
4 12 13 14
a b c
5 15 16 17
6 18 19 20
a b c
7 21 22 23
您可以使用字典来代替为每个数据框定义新变量:
d = dict(tuple(df.groupby(idx)))
print(d[1]) # print second groupby value
a b c
2 6 7 8
3 9 10 11
4 12 13 14
答案 4 :(得分:0)
我认为这是您所需要的:
df = pd.DataFrame({'a': np.arange(1, 8),
'b': np.arange(1, 8),
'c': np.arange(1, 8)})
df.head()
a b c
0 1 1 1
1 2 2 2
2 3 3 3
3 4 4 4
4 5 5 5
5 6 6 6
6 7 7 7
last_check = 0
dfs = []
for ind in [2, 5, 7]:
dfs.append(df.loc[last_check:ind-1])
last_check = ind
尽管列表理解比for循环要有效得多,但是如果索引列表中没有模式,则last_check是必需的。
dfs[0]
a b c
0 1 1 1
1 2 2 2
dfs[2]
a b c
5 6 6 6
6 7 7 7