我正在运行线性模型回归分析脚本,并且正在我的模型上运行emmeans(ls意思是),但是我不确定整个NA的原因...这是我运行的内容:
setwd("C:/Users/wkmus/Desktop/R-Stuff")
### yeild-twt
ASM_Data<-read.csv("ASM_FIELD_18_SUMM_wm.csv",header=TRUE, na.strings=".")
head(ASM_Data)
str(ASM_Data)
####"NA" values in table are labeled as "." colored orange
ASM_Data$REP <- as.factor(ASM_Data$REP)
head(ASM_Data$REP)
ASM_Data$ENTRY_NO <-as.factor(ASM_Data$ENTRY_NO)
head(ASM_Data$ENTRY_NO)
ASM_Data$RANGE<-as.factor(ASM_Data$RANGE)
head(ASM_Data$RANGE)
ASM_Data$PLOT_ID<-as.factor(ASM_Data$PLOT_ID)
head(ASM_Data$PLOT_ID)
ASM_Data$PLOT<-as.factor(ASM_Data$PLOT)
head(ASM_Data$PLOT)
ASM_Data$ROW<-as.factor(ASM_Data$ROW)
head(ASM_Data$ROW)
ASM_Data$REP <- as.numeric(as.character(ASM_Data$REP))
head(ASM_Data$REP)
ASM_Data$TWT_g.li <- as.numeric(as.character(ASM_Data$TWT_g.li))
ASM_Data$Yield_kg.ha <- as.numeric(as.character(ASM_Data$Yield_kg.ha))
ASM_Data$PhysMat_Julian <- as.numeric(as.character(ASM_Data$PhysMat_Julian))
ASM_Data$flowering <- as.numeric(as.character(ASM_Data$flowering))
ASM_Data$height <- as.numeric(as.character(ASM_Data$height))
ASM_Data$CLEAN.WT <- as.numeric(as.character(ASM_Data$CLEAN.WT))
ASM_Data$GRAV.TEST.WEIGHT <-as.numeric(as.character(ASM_Data$GRAV.TEST.WEIGHT))
str(ASM_Data)
library(lme4)
#library(lsmeans)
library(emmeans)
以下是数据框:
> str(ASM_Data)
'data.frame': 270 obs. of 20 variables:
$ TRIAL_ID : Factor w/ 1 level "18ASM_OvOv": 1 1 1 1 1 1 1 1 1 1 ...
$ PLOT_ID : Factor w/ 270 levels "18ASM_OvOv_002",..: 1 2 3 4 5 6 7 8 9 10 ...
$ PLOT : Factor w/ 270 levels "2","3","4","5",..: 1 2 3 4 5 6 7 8 9 10 ...
$ ROW : Factor w/ 20 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
$ RANGE : Factor w/ 15 levels "1","2","3","4",..: 2 3 4 5 6 7 8 9 10 12 ...
$ REP : num 1 1 1 1 1 1 1 1 1 1 ...
$ MP : int 1 1 1 1 1 1 1 1 1 1 ...
$ SUB.PLOT : Factor w/ 6 levels "A","B","C","D",..: 1 1 1 1 2 2 2 2 2 3 ...
$ ENTRY_NO : Factor w/ 139 levels "840","850","851",..: 116 82 87 134 77 120 34 62 48 136 ...
$ height : num 74 70 73 80 70 73 75 68 65 68 ...
$ flowering : num 133 133 134 134 133 131 133 137 134 132 ...
$ CLEAN.WT : num 1072 929 952 1149 1014 ...
$ GRAV.TEST.WEIGHT : num 349 309 332 340 325 ...
$ TWT_g.li : num 699 618 663 681 650 684 673 641 585 646 ...
$ Yield_kg.ha : num 2073 1797 1841 2222 1961 ...
$ Chaff.Color : Factor w/ 3 levels "Bronze","Mixed",..: 1 3 3 1 1 1 1 3 1 3 ...
$ CHAFF_COLOR_SCALE: int 2 1 1 2 2 2 2 1 2 1 ...
$ PhysMat : Factor w/ 3 levels "6/12/2018","6/13/2018",..: 1 1 1 1 1 1 1 1 1 1 ...
$ PhysMat_Julian : num 163 163 163 163 163 163 163 163 163 163 ...
$ PEDIGREE : Factor w/ 1 level "OVERLEY/OVERLAND": 1 1 1 1 1 1 1 1 1 1 ...
这是ASM数据的标题:
head(ASM_Data)
`TRIAL_ID PLOT_ID PLOT ROW RANGE REP MP SUB.PLOT ENTRY_NO height flowering CLEAN.WT GRAV.TEST.WEIGHT TWT_g.li`
1 18ASM_OvOv 18ASM_OvOv_002 2 1 2 1 1 A 965 74 133 1071.5 349.37 699
2 18ASM_OvOv 18ASM_OvOv_003 3 1 3 1 1 A 931 70 133 928.8 309.13 618
3 18ASM_OvOv 18ASM_OvOv_004 4 1 4 1 1 A 936 73 134 951.8 331.70 663
4 18ASM_OvOv 18ASM_OvOv_005 5 1 5 1 1 A 983 80 134 1148.6 340.47 681
5 18ASM_OvOv 18ASM_OvOv_006 6 1 6 1 1 B 926 70 133 1014.0 324.95 650
6 18ASM_OvOv 18ASM_OvOv_007 7 1 7 1 1 B 969 73 131 1076.6 342.09 684
Yield_kg.ha Chaff.Color CHAFF_COLOR_SCALE PhysMat PhysMat_Julian PEDIGREE
1 2073 Bronze 2 6/12/2018 163 OVERLEY/OVERLAND
2 1797 White 1 6/12/2018 163 OVERLEY/OVERLAND
3 1841 White 1 6/12/2018 163 OVERLEY/OVERLAND
4 2222 Bronze 2 6/12/2018 163 OVERLEY/OVERLAND
5 1961 Bronze 2 6/12/2018 163 OVERLEY/OVERLAND
6 2082 Bronze 2 6/12/2018 163 OVERLEY/OVERLAND
我正在研究一个处理体重的线性模型。
这是我跑的:
ASM_Data$TWT_g.li <- as.numeric(as.character((ASM_Data$TWT_g.li)))
head(ASM_Data$TWT_g.li)
ASM_YIELD_1 <- lm(TWT_g.li~ENTRY_NO + REP + SUB.BLOCK, data=ASM_Data)
anova(ASM_YIELD_1)
summary(ASM_YIELD_1)
emmeans(ASM_YIELD_1, "ENTRY_NO") ###########ADJ. MEANS
我得到方差分析的输出
anova(ASM_YIELD_1)
Analysis of Variance Table
Response: TWT_g.li
Df Sum Sq Mean Sq F value Pr(>F)
ENTRY_NO 138 217949 1579 7.0339 < 2e-16 ***
REP 1 66410 66410 295.7683 < 2e-16 ***
SUB.BLOCK 4 1917 479 2.1348 0.08035 .
Residuals 125 28067 225
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
但是对于em,我得到的是这样的:
ENTRY_NO emmean SE df asymp.LCL asymp.UCL
840 nonEst NA NA NA NA
850 nonEst NA NA NA NA
851 nonEst NA NA NA NA
852 nonEst NA NA NA NA
853 nonEst NA NA NA NA
854 nonEst NA NA NA NA
855 nonEst NA NA NA NA
857 nonEst NA NA NA NA
858 nonEst NA NA NA NA
859 nonEst NA NA NA NA
我的数据中确实有离群值,以“。”表示。在我的数据中,但这是我唯一想到的是关闭状态。
当我运行with(ASM_Data, table(ENTRY_NO, REP, SUB.BLOCK))
这就是我所拥有的:
with(ASM_Data, table(ENTRY_NO,REP,SUB.BLOCK))
, , SUB.BLOCK = A
REP
ENTRY_NO 1 2
840 0 0
850 0 0
851 0 0
852 0 0
853 0 0
854 0 0
855 0 0
857 0 0
858 0 0
859 0 0
860 0 0
861 0 0
862 0 0
863 1 0
864 0 0
865 1 0
866 1 0
867 0 0
868 0 0
869 1 0
870 1 0
871 0 0
872 0 0
873 0 0
874 0 0
875 0 0
876 0 0
877 0 0
878 0 0
879 1 0
880 0 0
881 0 0
882 0 0
883 0 0
884 0 0
885 1 0
886 0 0
887 1 0
888 1 0
889 1 0
890 0 0
891 1 0
892 0 0
893 0 0
894 0 0
895 0 0
896 1 0
897 0 0
898 0 0
899 0 0
900 1 0
901 1 0
902 0 0
903 0 0
904 1 0
905 1 0
906 0 0
907 1 0
908 1 0
909 0 0
910 0 0
911 0 0
912 0 0
913 0 0
914 0 0
915 0 0
916 1 0
917 0 0
918 0 0
919 1 0
920 0 0
921 0 0
922 0 0
923 1 0
924 0 0
925 0 0
926 0 0
927 1 0
928 0 0
929 0 0
930 0 0
931 1 0
932 0 0
933 0 0
934 0 0
935 0 0
936 1 0
937 0 0
938 1 0
939 1 0
940 0 0
941 1 0
942 0 0
943 1 0
944 0 0
945 0 0
946 0 0
947 0 0
948 1 0
949 0 0
950 1 0
951 0 0
952 0 0
953 0 0
954 0 0
955 1 0
956 1 0
957 1 0
958 1 0
959 0 0
960 0 0
961 0 0
962 0 0
963 0 0
964 0 0
965 1 0
966 0 0
967 1 0
968 0 0
969 0 0
970 1 0
971 0 0
972 0 0
973 0 0
974 1 0
975 0 0
976 0 0
977 0 0
978 1 0
979 0 0
980 0 0
981 0 0
982 0 0
983 1 0
984 1 0
985 0 0
986 1 0
987 3 0
988 0 0
, , SUB.BLOCK = B
REP
ENTRY_NO 1 2
840 0 0
850 0 0
851 0 0
852 0 0
853 1 0
854 0 0
855 0 0
857 0 0
858 0 0
859 0 0
860 0 0
861 1 0
862 0 0
863 0 0
864 0 0
865 0 0
866 0 0
867 0 0
868 0 0
869 0 0
870 0 0
871 1 0
872 0 0
873 0 0
874 0 0
875 0 0
876 1 0
877 1 0
878 1 0
879 0 0
880 1 0
881 0 0
882 1 0
883 1 0
884 1 0
885 0 0
886 0 0
887 0 0
888 0 0
889 0 0
890 1 0
891 0 0
892 1 0
893 1 0
894 1 0
895 1 0
896 0 0
897 1 0
898 0 0
899 0 0
900 0 0
901 0 0
902 1 0
903 0 0
904 0 0
905 0 0
906 0 0
907 0 0
908 0 0
909 1 0
910 0 0
911 1 0
912 0 0
913 1 0
914 0 0
915 0 0
916 0 0
917 0 0
918 0 0
919 0 0
920 1 0
921 1 0
922 0 0
923 0 0
924 0 0
925 1 0
926 1 0
927 0 0
928 0 0
929 0 0
930 1 0
931 0 0
932 1 0
933 0 0
934 1 0
935 0 0
936 0 0
937 1 0
938 0 0
939 0 0
940 1 0
941 0 0
942 0 0
943 0 0
944 0 0
945 1 0
946 0 0
947 1 0
948 0 0
949 0 0
950 0 0
951 1 0
952 0 0
953 0 0
954 1 0
955 0 0
956 0 0
957 0 0
958 0 0
959 1 0
960 0 0
961 0 0
962 1 0
963 0 0
964 0 0
965 0 0
966 0 0
967 0 0
968 0 0
969 1 0
970 0 0
971 0 0
972 0 0
973 0 0
974 0 0
975 0 0
976 1 0
977 1 0
978 0 0
979 0 0
980 0 0
981 1 0
982 1 0
983 0 0
984 0 0
985 3 0
986 0 0
987 1 0
988 1 0
, , SUB.BLOCK = C
REP
ENTRY_NO 1 2
840 0 0
850 0 0
851 0 0
852 0 0
853 0 0
854 0 0
855 0 0
857 1 0
858 0 0
859 1 0
860 0 0
861 0 0
862 1 0
863 0 0
864 0 0
865 0 0
866 0 0
867 0 0
868 0 0
869 0 0
870 0 0
871 0 0
872 1 0
873 0 0
874 0 0
875 0 0
876 0 0
877 0 0
878 0 0
879 0 0
880 0 0
881 1 0
882 0 0
883 0 0
884 0 0
885 0 0
886 1 0
887 0 0
888 0 0
889 0 0
890 0 0
891 0 0
892 0 0
893 0 0
894 0 0
895 0 0
896 0 0
897 0 0
898 1 0
899 1 0
900 0 0
901 0 0
902 0 0
903 1 0
904 0 0
905 0 0
906 1 0
907 0 0
908 0 0
909 0 0
910 1 0
911 0 0
912 1 0
913 0 0
914 1 0
915 1 0
916 0 0
917 1 0
918 1 0
919 0 0
920 0 0
921 0 0
922 1 0
923 0 0
924 1 0
925 0 0
926 0 0
927 0 0
928 1 0
929 1 0
930 0 0
931 0 0
932 0 0
933 1 0
934 0 0
935 1 0
936 0 0
937 0 0
938 0 0
939 0 0
940 0 0
941 0 0
942 1 0
943 0 0
944 1 0
945 0 0
946 1 0
947 0 0
948 0 0
949 1 0
950 0 0
951 0 0
952 1 0
953 1 0
954 0 0
955 0 0
956 0 0
957 0 0
958 0 0
959 0 0
960 1 0
961 1 0
962 0 0
963 1 0
964 1 0
965 0 0
966 1 0
967 0 0
968 1 0
969 0 0
970 0 0
971 1 0
972 1 0
973 1 0
974 0 0
975 1 0
976 0 0
977 0 0
978 1 0
979 2 0
980 0 0
981 0 0
982 0 0
983 0 0
984 0 0
985 1 0
986 3 0
987 0 0
988 0 0
, , SUB.BLOCK = D
REP
ENTRY_NO 1 2
840 0 0
850 0 0
851 0 0
852 0 1
853 0 0
854 0 0
855 0 0
857 0 0
858 0 1
859 0 0
860 0 1
861 0 0
862 0 0
863 0 0
864 0 1
865 0 0
866 0 0
867 0 0
868 0 0
869 0 0
870 0 0
871 0 0
872 0 0
873 0 0
874 0 0
875 0 1
876 0 0
877 0 0
878 0 1
879 0 0
880 0 1
881 0 1
882 0 1
883 0 1
884 0 1
885 0 0
886 0 0
887 0 0
888 0 0
889 0 0
890 0 0
891 0 0
892 0 1
893 0 0
894 0 0
895 0 0
896 0 0
897 0 1
898 0 0
899 0 1
900 0 0
901 0 0
902 0 1
903 0 0
904 0 0
905 0 0
906 0 0
907 0 0
908 0 0
909 0 0
910 0 0
911 0 0
912 0 0
913 0 1
914 0 1
915 0 1
916 0 0
917 0 1
918 0 1
919 0 0
920 0 0
921 0 1
922 0 1
923 0 0
924 0 0
925 0 0
926 0 0
927 0 0
928 0 0
929 0 1
930 0 1
931 0 0
932 0 0
有人可以告诉我发生了什么事吗?
谢谢!
答案 0 :(得分:0)
coef(ASM_YIELD_1)
如果任何rep或block效果都不可用,则您无法估算所有的rep或block效果,这使得它们的平均值不可估计。
您可以通过执行以下操作确切地查看哪些因子组合是不可估计的:
summary(ref_grid(ASM_YIELD_1))
这是我在评论中要求的表格的重新格式化:
ENTRY ---------- BLOCK -------------
NO A B C D
840 0 0 0 0 0 0 0 0
850 0 0 0 0 0 0 0 0
851 0 0 0 0 0 0 0 0
852 0 0 0 0 0 0 0 1
853 0 0 1 0 0 0 0 0
854 0 0 0 0 0 0 0 0
855 0 0 0 0 0 0 0 0
857 0 0 0 0 1 0 0 0
858 0 0 0 0 0 0 0 1
859 0 0 0 0 1 0 0 0
... etc ...
这是极为稀疏的数据。我认为还有两个未显示的块。但是我看到很少有实例在多个rep或block中观察到给定的ENTRY_NO。因此,我认为尝试考虑此模型中的代表效应或阻滞效应严重不合适。
MAYBE从模型中省略REP将使其起作用。可以用factor(REP)代替REP重新拟合模型,这将使emmeans能够检测嵌套结构。否则,阻滞结构和治疗方法确实存在一些微妙的依赖性,我不知道该怎么建议。
答案 1 :(得分:0)
我已经能够创造这样的情况。考虑以下数据集:
> junk
trt rep blk y
1 A 1 1 -1.17415687
2 B 1 1 -0.20084854
3 C 1 1 0.64797806
4 A 1 2 -1.69371434
5 B 1 2 -0.35835442
6 C 1 2 1.35718782
7 A 1 3 0.20510482
8 B 1 3 1.00857651
9 C 1 3 -0.20553167
10 A 2 4 0.31261523
11 B 2 4 0.47989115
12 C 2 4 1.27574085
13 A 2 5 -0.79209520
14 B 2 5 1.07151315
15 C 2 5 -0.04222769
16 A 2 6 -0.80571767
17 B 2 6 0.80442988
18 C 2 6 1.73526561
这有6个完整的块,每个代表分别标记为3个块。 rep
是具有值1
和2
的数字变量,而blk
是具有6个级别1
的因数,这不是很明显,但确实如此。 6
:
> sapply(junk, class)
trt rep blk y
"factor" "numeric" "factor" "numeric"
有了这个完整的数据集,我可以毫不费力地获得用于建模情况的EMM,以与原始发布中使用的情况类似。但是,如果仅使用这些数据的一个子集,则情况有所不同。考虑:
> samp
[1] 1 2 3 5 8 11 13 15 16
> junk.lm = lm(y ~ trt + rep + blk, data = junk, subset = samp)
> emmeans(junk.lm, "trt")
trt emmean SE df asymp.LCL asymp.UCL
A nonEst NA NA NA NA
B nonEst NA NA NA NA
C nonEst NA NA NA NA
Results are averaged over the levels of: blk
Confidence level used: 0.95
同样,请记住,在此模型中,rep
是数字。如果相反,我将rep
作为一个因素:
> junk.lmf = lm(y ~ trt + factor(rep) + blk, data = junk, subset = samp)
> emmeans(junk.lmf, "trt")
NOTE: A nesting structure was detected in the fitted model:
blk %in% rep
If this is incorrect, re-run or update with `nesting` specified
trt emmean SE df lower.CL upper.CL
A -0.6262635 0.4707099 1 -6.607200 5.354673
B 0.0789780 0.3546191 1 -4.426885 4.584841
C 0.6597377 0.5191092 1 -5.936170 7.255646
Results are averaged over the levels of: blk, rep
Confidence level used: 0.95
我们得到非NA
的估计值,部分原因是它能够检测到blk
嵌套在rep
中的事实,从而在每个rep中分别执行EMM计算。请注意,在最后一个输出的注释中,平均是在2个重复和6个块上完成的;而在fiber.lm
中,平均仅对块进行,而rep
(一个数字变量)被设置为其平均值。比较两个模型的参考网格:
> ref_grid(junk.lm)
'emmGrid' object with variables:
trt = A, B, C
rep = 1.4444
blk = 1, 2, 3, 4, 5, 6
> ref_grid(junk.lmf)
'emmGrid' object with variables:
trt = A, B, C
rep = 1, 2
blk = 1, 2, 3, 4, 5, 6
Nesting structure: blk %in% rep
另一种选择是通过简单地从模型中省略rep
来避免嵌套问题:
> junk.lm.norep = lm(y ~ trt + blk, data = junk, subset = samp)
> emmeans(junk.lm.norep, "trt")
trt emmean SE df lower.CL upper.CL
A -0.6262635 0.4707099 1 -6.607200 5.354673
B 0.0789780 0.3546191 1 -4.426885 4.584841
C 0.6597377 0.5191092 1 -5.936170 7.255646
Results are averaged over the levels of: blk
Confidence level used: 0.95
请注意,产生的结果完全相同。原因是blk
的水平已经可以预测rep
的水平,因此模型中不需要它。
总结:
rep
在模型中是数字预测变量,而不是因素。factor(REP)
(而不是REP
)重新拟合模型作为数值预测变量。这可能足以产生估计值。SUB.BLOCK
级别预测了REP
级别,则将REP
完全排除在模型之外。