过采样二进制

时间:2018-11-19 15:41:17

标签: python binary discrete-mathematics

我有一些由类(X)和一些二进制(Y)组成的数据。我想通过对较小的类进行过度采样来使类大小相等。例如,如果我开始:

Df_01 = pd.DataFrame({'X' : [1,1,1,1,1,1,1,2,2],
                      'Y1': [1,1,1,1,1,0,0,0,1],
                      'Y2': [0,0,0,0,0,1,0,0,0]})

那我想得到:

Df_02 = pd.DataFrame({'X' : [1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2],
                      'Y1': [1,1,1,1,1,0,0,0,1,0,1,0,1,0,1,0],
                      'Y2': [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]})

我尝试这样做:

# Sort the data by class
Ma_01 = Df_01.groupby('X')
Di_01 = {}
for name, group in Ma_01:
    Di_01[str(name)] = group

# Size of each class
Se_01 = Df_01.groupby('X').size()

# Size of the biggest class
In_Bi = max(Se_01)

# How much over sampling would equalise the class sizes?
Se_Ra =  In_Bi / Se_01
Di_Ra =  Se_Ra.to_dict()

但是当我尝试:

# Copy each dataframe
Di_03 = {}
for x in Di_01:
    for y in range(int(Di_Ra[int(x)])):
        if not Di_03:
            Di_03[x] = Di_01[x]
        else:
            Di_03[x] = Di_03[x] .append(Di_01[x])

# Concatonate the dictionary to a single dataframe
df_03 = pd.concat(Di_03.values(), ignore_index=True)

我知道

KeyError: '2'

1 个答案:

答案 0 :(得分:0)

感谢您找到重复的Matthew Strawbridge!艾汉(Ayhan)对我的数据原始作品的回答:

max_size = Df_01['X'].value_counts().max()

lst = [Df_01]

for class_index, group in Df_01.groupby('X'):
    lst.append(group.sample(max_size-len(group), replace=True))

Df_03 = pd.concat(lst)