我用生产者和消费者建立了一个kafka系统,将json文件的行作为消息流传输。
使用pyspark,我需要分析不同流式传输窗口的数据。为此,我需要查看pyspark流式传输的数据...该怎么办?
要运行我使用的Yannael's Docker容器代码。这是我的python代码:
# Add dependencies and load modules
import os
os.environ['PYSPARK_SUBMIT_ARGS'] = '--conf spark.ui.port=4040 --packages org.apache.spark:spark-streaming-kafka-0-8_2.11:2.0.0,com.datastax.spark:spark-cassandra-connector_2.11:2.0.0-M3 pyspark-shell'
from kafka import KafkaConsumer
from random import randint
from time import sleep
# Load modules and start SparkContext
from pyspark import SparkContext, SparkConf
from pyspark.sql import SQLContext, Row
conf = SparkConf() \
.setAppName("Streaming test") \
.setMaster("local[2]") \
.set("spark.cassandra.connection.host", "127.0.0.1")
try:
sc.stop()
except:
pass
sc = SparkContext(conf=conf)
sqlContext=SQLContext(sc)
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils
# Create streaming task
ssc = StreamingContext(sc, 0.60)
kafkaStream = KafkaUtils.createStream(ssc, "127.0.0.1:2181", "spark-streaming-consumer", {'test': 1})
ssc.start()
答案 0 :(得分:1)
您可以致电kafkaStream.pprint()
或了解更多信息about structured streaming,并可以像这样打印
query = kafkaStream \
.writeStream \
.outputMode("complete") \
.format("console") \
.start()
query.awaitTermination()
我看到您有cassandra个端点,因此假设您正在编写Cassandra,可以使用Kafka Connect而不是为此编写Spark代码