numpy:提取连续数字范围的有效方法

时间:2018-11-18 13:08:20

标签: python numpy

假设其中有一个浮点数的numpy数组,其中所有值都位于[0,1]中,例如

arr = np.array([
    [0.1,  0.1,  0.1,  0.4,  0.91, 0.81, 0.84], # channel 1 
    [0.81, 0.79, 0.85, 0.1,  0.2,  0.61, 0.91], # channel 2 
    [0.3,  0.1,  0.24, 0.87, 0.62, 1,    0   ], # channel 3
    #...
])

,那个人想把这个秘密转换成二进制数组。可以通过以下方法轻松地完成此操作:

def binary_mask(arr, cutoff=0.5):
  return (arr > cutoff).astype(int)

m = binary_mask(arr)

# array([[0, 0, 0, 0, 1, 1, 1],
#    [1, 1, 1, 0, 0, 1, 1],
#    [0, 0, 0, 1, 1, 1, 0]])

一个人可以通过以下方式获取1的所有索引

for channel in m:
  print(channel.nonzero())

# (array([4, 5, 6]),)
# (array([0, 1, 2, 5, 6]),)
# (array([3, 4, 5]),)

连续数字运行的一种有效方式

例如

[ 
    [[4,6]], 
    [[0,2], [5,6]], 
    [[3,5]]
]

一个幼稚的方法可能是:

def consecutive_integers(arr):

    # indexes of nonzero
    nz = arr.nonzero()[0]

    # storage of "runs"
    runs = []

    # error handle all zero array
    if not len(nz):
        return [[]]

    # run starts with current value
    run_start = nz[0]
    for i in range(len(nz)-1):

        # if run is broken
        if nz[i]+1 != nz[i+1]:
            # store run
            runs.append([run_start, nz[i]])

        # start next run at next number
        run_start = nz[i+1]

    # last run ends with last value
    runs.append([run_start, nz[-1]])

    return runs



print(m)
for runs in [consecutive_integers(c) for c in m]:
    print(runs)



# [[0 0 0 0 1 1 1]
#  [1 1 1 0 0 1 1]
#  [0 0 0 1 1 1 0]]
# 
# [[4, 6]]
# [[0, 2], [5, 6]]
# [[3, 5]]

4 个答案:

答案 0 :(得分:2)

您可以比较连续的指标,然后使用whereflatnonzero

>>> x
array([[0, 0, 0, 0, 1, 1, 1],
       [1, 1, 1, 0, 0, 1, 1],
       [0, 0, 0, 1, 1, 1, 0]])
>>> 
# find switches 0->1 and 1->0
>>> d = np.empty((np.arange(2) + x.shape), bool)
>>> d[:, 0] = x[:, 0]   # a 1 in the first
>>> d[:, -1] = x[:, -1] # or last column counts as a switch
>>> d[:, 1:-1] = x[:, 1:] != x[:, :-1]
>>> 
# find switch indices (of flattened array)
>>> b = np.flatnonzero(d)
# create helper array of row offsets
>>> o = np.arange(0, d.size, d.shape[1])
# split into rows, subtract row offsets and reshape into start, end pairs
>>> result = [(x-y).reshape(-1, 2) for x, y in zip(np.split(b, b.searchsorted(o[1:])), o)]
>>> 
>>> result
[array([[4, 7]]), array([[0, 3],
       [5, 7]]), array([[3, 6]])]

这使用python约定,即不包括右端。如果要包含右端,请改用result = [(x-y).reshape(-1, 2) - np.arange(2) for x, y in zip(np.split(b, b.searchsorted(o[1:])), o)]

答案 1 :(得分:1)

我会查看以下答案:https://stackoverflow.com/a/7353335/1141389

它使用np.split

答案 2 :(得分:0)

使用numpy.where可以得到它。我已经扩展了您的数组,以尝试其他情况。

import numpy as np

def binary_mask(arr, cutoff=0.5):
  return (arr > cutoff).astype(int)

arr = np.array([
    [0.1,  0.1,  0.1,  0.4,  0.91, 0.81, 0.84, 0, 0.1], # channel 1 
    [0.81, 0.79, 0.85, 0.1,  0.2,  0.61, 0.91, 0,   1], # channel 2 
    [0.3,  0.1,  0.24, 0.87, 0.62, 1,       0, 1,   1], # channel 3
])

m = binary_mask(arr)
for channel in m:
  c = channel.nonzero()[0]
  a = (np.where(np.diff(c) != 1)[0]).tolist()
  a.insert(0,0)
  b = []
  for i, x in enumerate(a):
    if i == len(a)-1 and i > 0:
      b.append([c[x+1], c[-1]])
    elif i == len(a)-1 and i == 0:
      b.append([c[x], c[-1]])
    elif i == 0:
      b.append([c[x], c[a[i+1]]])
    else:
      b.append([c[x+1], c[a[i+1]]])

  print('c = ', c)
  print('a = ', a)
  print('b = ', b)

该程序输出:

c =  [4 5 6]
a =  [0]
b =  [[4, 6]]
c =  [0 1 2 5 6 8]
a =  [0, 2, 4]
b =  [[0, 2], [5, 6], [8, 8]]
c =  [3 4 5 7 8]
a =  [0, 2]
b =  [[3, 5], [7, 8]]

答案 3 :(得分:0)

我想必须有一种更好的方法来按其元素之间的条件对数组进行切片,但我找不到它。

到目前为止,我发现这是一种解决方案,可以按连续元素切片并返回极限值:

import numpy as np

def slice_consecutives(ary):
  pass
  res=[]
  tmp = [ary[0]]
  for idx, x in np.ndenumerate(ary[1:]):
    if x - ary[idx[0]] > 1 or idx[0] + 2 == len(ary):
      if tmp[0] != tmp[-1]: res.append([tmp[0], tmp[-1]])
      tmp = []
    tmp.append(x)
  if ary[-1] - res[-1][-1] == 1: res[-1][-1] = ary[-1]
  return res

ary = np.array([0, 2, 3, 5, 6, 7, 8, 11, 12, 13, 14])
print(slice_consecutives(ary))
# => [[2, 3], [5, 8], [11, 14]]


arry = np.array([4,5,6])
print(slice_consecutives(arry))
#=> [[4, 6]]