我正在使用Exercism to learn F#。第N个Prime挑战是建立一个Sieve of Eratosthenes。单元测试让您搜索了第1,001个素数,即104,743。
我修改了我从F# For Fun and Profit记得的代码片段以进行批量工作(需要10k素数,而不是25),并将其与我自己的命令式版本进行了比较。有明显的性能差异:
有没有一种惯用的方式来做到这一点?我喜欢F#。我喜欢使用F#库节省多少时间。但有时我看不到一条有效的惯用路线。
这是惯用的代码:
// we only need to check numbers ending in 1, 3, 7, 9 for prime
let getCandidates seed =
let nextTen seed ten =
let x = (seed) + (ten * 10)
[x + 1; x + 3; x + 7; x + 9]
let candidates = [for x in 0..9 do yield! nextTen seed x ]
match candidates with
| 1::xs -> xs //skip 1 for candidates
| _ -> candidates
let filterCandidates (primes:int list) (candidates:int list): int list =
let isComposite candidate =
primes |> List.exists (fun p -> candidate % p = 0 )
candidates |> List.filter (fun c -> not (isComposite c))
let prime nth : int option =
match nth with
| 0 -> None
| 1 -> Some 2
| _ ->
let rec sieve seed primes candidates =
match candidates with
| [] -> getCandidates seed |> filterCandidates primes |> sieve (seed + 100) primes //get candidates from next hunderd
| p::_ when primes.Length = nth - 2 -> p //value found; nth - 2 because p and 2 are not in primes list
| p::xs when (p * p) < (seed + 100) -> //any composite of this prime will not be found until after p^2
sieve seed (p::primes) [for x in xs do if (x % p) > 0 then yield x]
| p::xs ->
sieve seed (p::primes) xs
Some (sieve 0 [3; 5] [])
这是当务之急:
type prime =
struct
val BaseNumber: int
val mutable NextMultiple: int
new (baseNumber) = {BaseNumber = baseNumber; NextMultiple = (baseNumber * baseNumber)}
//next multiple that is odd; (odd plus odd) is even plus odd is odd
member this.incrMultiple() = this.NextMultiple <- (this.BaseNumber * 2) + this.NextMultiple; this
end
let prime nth : int option =
match nth with
| 0 -> None
| 1 -> Some 2
| _ ->
let nth' = nth - 1 //not including 2, the first prime
let primes = Array.zeroCreate<prime>(nth')
let mutable primeCount = 0
let mutable candidate = 3
let mutable isComposite = false
while primeCount < nth' do
for i = 0 to primeCount - 1 do
if primes.[i].NextMultiple = candidate then
isComposite <- true
primes.[i] <- primes.[i].incrMultiple()
if isComposite = false then
primes.[primeCount] <- new prime(candidate)
primeCount <- primeCount + 1
isComposite <- false
candidate <- candidate + 2
Some primes.[nth' - 1].BaseNumber
答案 0 :(得分:2)
因此,通常,使用功能惯用法时,您可能希望比使用命令式模型慢一些,因为您必须创建新对象,而创建新对象的时间要比修改现有对象更长。
对于此问题,尤其是以下事实:使用F#列表时,与使用数组相比,每次都需要迭代素数列表这一事实会降低性能。您还应该注意,您不需要单独生成候选列表,只需循环并动态添加2。也就是说,最大的性能赢利可能是使用变异来存储您的nextNumber
。
type prime = {BaseNumber: int; mutable NextNumber: int}
let isComposite (primes:prime list) candidate =
let rec inner primes candidate =
match primes with
| [] -> false
| p::ps ->
match p.NextNumber = candidate with
| true -> p.NextNumber <- p.NextNumber + p.BaseNumber*2
inner ps candidate |> ignore
true
| false -> inner ps candidate
inner primes candidate
let prime nth: int option =
match nth with
| 0 -> None
| 1 -> Some 2
| _ ->
let rec findPrime (primes: prime list) (candidate: int) (n: int) =
match nth - n with
| 1 -> primes
| _ -> let isC = isComposite primes candidate
if (not isC) then
findPrime ({BaseNumber = candidate; NextNumber = candidate*candidate}::primes) (candidate + 2) (n+1)
else
findPrime primes (candidate + 2) n
let p = findPrime [{BaseNumber = 3; NextNumber = 9};{BaseNumber = 5; NextNumber = 25}] 7 2
|> List.head
Some(p.BaseNumber)
通过#time
运行此程序,我大约需要500毫秒才能运行prime 10001
。为了进行比较,您的“命令式”代码大约需要250毫秒,而“ idomatic”的代码大约需要1300毫秒。
答案 1 :(得分:1)
乍一看,您不是在比较相等的概念。当然,我并不是在谈论功能与命令,而是算法本身背后的概念。
您的Wiki参考文献说得最好:
这是筛子的主要区别,它是使用试算法依次测试每个候选数的素数除法。
换句话说,Eratosthenes的筛网在于不使用审判分庭。另一个wiki ref:
尝试除法是最费力但最容易理解的整数分解算法。
实际上是您在过滤器中所做的事情。
let isComposite candidate =
primes |> List.exists (fun p -> candidate % p = 0 )