F#成语表现

时间:2018-11-18 01:33:10

标签: performance f# idiomatic imperative

我正在使用Exercism to learn F#。第N个Prime挑战是建立一个Sieve of Eratosthenes。单元测试让您搜索了第1,001个素数,即104,743。

我修改了我从F# For Fun and Profit记得的代码片段以进行批量工作(需要10k素数,而不是25),并将其与我自己的命令式版本进行了比较。有明显的性能差异:

BenchmarkDotNet v0.11.2 Results (BenchmarkDotNet v0.11.2)

有没有一种惯用的方式来做到这一点?我喜欢F#。我喜欢使用F#库节省多少时间。但有时我看不到一条有效的惯用路线。

这是惯用的代码:

// we only need to check numbers ending in 1, 3, 7, 9 for prime
let getCandidates seed = 
    let nextTen seed ten = 
        let x = (seed) + (ten * 10)
        [x + 1; x + 3; x + 7; x + 9]
    let candidates = [for x in 0..9 do yield! nextTen seed x ]
    match candidates with 
    | 1::xs -> xs  //skip 1 for candidates
    | _ -> candidates


let filterCandidates (primes:int list) (candidates:int list): int list = 
    let isComposite candidate = 
        primes |> List.exists (fun p -> candidate % p = 0 )
    candidates |> List.filter (fun c -> not (isComposite c))

let prime nth : int option = 
    match nth with 
        | 0 -> None
        | 1 -> Some 2
        | _ ->
            let rec sieve seed primes candidates = 
                match candidates with 
                | [] -> getCandidates seed |> filterCandidates primes |> sieve (seed + 100) primes //get candidates from next hunderd
                | p::_ when primes.Length = nth - 2 -> p //value found; nth - 2 because p and 2 are not in primes list
                | p::xs when (p * p) < (seed + 100) -> //any composite of this prime will not be found until after p^2
                    sieve seed (p::primes) [for x in xs do if (x % p) > 0 then yield x]
                | p::xs -> 
                    sieve seed (p::primes) xs


            Some (sieve 0 [3; 5] [])

这是当务之急:

type prime = 
    struct 
        val BaseNumber: int
        val mutable NextMultiple: int
        new (baseNumber) = {BaseNumber = baseNumber; NextMultiple = (baseNumber * baseNumber)}
        //next multiple that is odd; (odd plus odd) is even plus odd is odd
        member this.incrMultiple() = this.NextMultiple <- (this.BaseNumber * 2) + this.NextMultiple; this 
    end

let prime nth : int option = 
    match nth with 
    | 0 -> None
    | 1 -> Some 2
    | _ ->
        let nth' = nth - 1 //not including 2, the first prime
        let primes = Array.zeroCreate<prime>(nth')
        let mutable primeCount = 0
        let mutable candidate = 3 
        let mutable isComposite = false
        while primeCount < nth' do

            for i = 0 to primeCount - 1 do
                if primes.[i].NextMultiple = candidate then
                    isComposite <- true
                    primes.[i] <- primes.[i].incrMultiple()

            if isComposite = false then 
                primes.[primeCount] <- new prime(candidate)
                primeCount <- primeCount + 1

            isComposite <- false
            candidate <- candidate + 2

        Some primes.[nth' - 1].BaseNumber

2 个答案:

答案 0 :(得分:2)

因此,通常,使用功能惯用法时,您可能希望比使用命令式模型慢一些,因为您必须创建新对象,而创建新对象的时间要比修改现有对象更长。

对于此问题,尤其是以下事实:使用F#列表时,与使用数组相比,每次都需要迭代素数列表这一事实会降低性能。您还应该注意,您不需要单独生成候选列表,只需循环并动态添加2。也就是说,最大的性能赢利可能是使用变异来存储您的nextNumber

type prime = {BaseNumber: int; mutable NextNumber: int}
let isComposite (primes:prime list) candidate = 
    let rec inner primes candidate =
        match primes with 
        | [] -> false
        | p::ps ->
            match p.NextNumber = candidate with
            | true -> p.NextNumber <- p.NextNumber + p.BaseNumber*2
                      inner ps candidate |> ignore
                      true
            | false -> inner ps candidate
    inner primes candidate


let prime nth: int option = 
    match nth with 
    | 0 -> None
    | 1 -> Some 2
    | _ -> 
            let rec findPrime (primes: prime list) (candidate: int) (n: int) = 
                match nth - n with 
                | 1 -> primes
                | _ -> let isC = isComposite primes candidate
                       if (not isC) then
                           findPrime ({BaseNumber = candidate; NextNumber = candidate*candidate}::primes) (candidate + 2) (n+1)
                       else
                           findPrime primes (candidate + 2) n
            let p = findPrime [{BaseNumber = 3; NextNumber = 9};{BaseNumber = 5; NextNumber = 25}] 7 2
                    |> List.head
            Some(p.BaseNumber)

通过#time运行此程序,我大约需要500毫秒才能运行prime 10001。为了进行比较,您的“命令式”代码大约需要250毫秒,而“ idomatic”的代码大约需要1300毫秒。

答案 1 :(得分:1)

乍一看,您不是在比较相等的概念。当然,我并不是在谈论功能与命令,而是算法本身背后的概念。

您的Wiki参考文献说得最好:

  

这是筛子的主要区别,它是使用试算法依次测试每个候选数的素数除法。

换句话说,Eratosthenes的筛网在于不使用审判分庭。另一个wiki ref

  

尝试除法是最费力但最容易理解的整数分解算法。

实际上是您在过滤器中所做的事情。

let isComposite candidate =  
    primes |> List.exists (fun p -> candidate % p = 0 )