我正在尝试为可变自动编码器添加自定义损失函数。除了重构损失,KL散度我希望基于输入和输出对的汉明距离之间的差异来增加损失。
但是我面临的问题是,无论有没有这种额外的损失,结果都是一样的。谁能指出我应该做些什么来纠正它?与尺寸有关吗?
这是我的代码段:
def ham_loss(y_true,y_pred):
# calculate pairwise hamming distance matrix
# differences of y_pred probabilities)
pairwise_diff_pred = K.expand_dims(y_pred, 0) - K.expand_dims(y_pred, 1)
pairwise_distance_pred = K.sum(pairwise_diff_pred, axis=-1)
# calculate pairwise hamming distance matrix for inputs
pairwise_diff_true = K.expand_dims(y_true, 0) - K.expand_dims(y_true, 1)
pairwise_distance_true = K.sum(pairwise_diff_true, axis=-1)
#Difference between the distances of y_true and y_predictions
hamm_sum= Lambda(differences)([pairwise_distance_true, pairwise_distance_pred])
print(hamm_sum)
return K.sum(hamm_sum, axis=-1)
def vae_loss(y_true, y_pred):
""" Calculate loss = reconstruction loss + KL loss for each data in minibatch """
# E[log P(X|z)]
recon = K.sum(K.binary_crossentropy(y_true,y_pred),axis=1)
# D_KL(Q(z|X) || P(z|X)); calculate in closed form as both dist. are Gaussian
kl = 0.5 * K.sum(K.exp(z_log_var) + K.square(z_mean) - 1. - z_log_var, axis=1)
hamming_loss = ham_loss(y_true,y_pred)
return recon + kl + hamming_loss
任何帮助,不胜感激!
先谢谢了。