R中kmean的创建预测函数

时间:2018-11-17 15:00:06

标签: r k-means

我要创建预测函数,以预测观察结果属于哪个聚类

data(iris)
 mydata=iris
m=mydata[1:4]
train=head(m,100)
xNew=head(m,10)


rownames(train)<-1:nrow(train)

norm_eucl=function(train)
  train/apply(train,1,function(x)sum(x^2)^.5)
m_norm=norm_eucl(train)


result=kmeans(m_norm,3,30)

predict.kmean <- function(cluster, newdata)
{
  simMat <- m_norm(rbind(cluster, newdata),
              sel=(1:nrow(newdata)) + nrow(cluster))[1:nrow(cluster), ]
  unname(apply(simMat, 2, which.max))
}

## assign new data samples to exemplars
predict.kmean(m_norm, x[result$cluster, ], xNew)

出现错误后

Error in predict.kmean(m_norm, x[result$cluster, ], xNew) : 
  unused argument (xNew)

我知道我正在做一些错误的功能,因为我只是在学习做这件事,但我不知道确切在哪里。

实际上我想采用apcluster的类似功能(我见过类似的话题,但对于apcluster)

predict.apcluster <- function(s, exemplars, newdata)
{
  simMat <- s(rbind(exemplars, newdata),
              sel=(1:nrow(newdata)) + nrow(exemplars))[1:nrow(exemplars), ]
  unname(apply(simMat, 2, which.max))
}

## assign new data samples to exemplars
predict.apcluster(negDistMat(r=2), x[apres@exemplars, ], xNew)

怎么做?

1 个答案:

答案 0 :(得分:3)

让我们提出自己的功能,而不是尝试复制某些内容。对于给定的向量x,我们想使用一些先前的k均值输出来分配聚类。给定k-means算法的工作原理,我们想要找到哪个集群的 center 最接近x。可以这样做

predict.kmeans <- function(x, newdata)
  apply(newdata, 1, function(r) which.min(colSums((t(x$centers) - r)^2)))

也就是说,我们逐行遍历newdata并计算到每个中心的相应行的距离,并找到最小的中心。然后,例如,

head(predict(result, train / sqrt(rowSums(train^2))), 3)
# 1 2 3 
# 2 2 2
all.equal(predict(result, train / sqrt(rowSums(train^2))), result$cluster)
# [1] TRUE

确认我们的预测函数将所有相同的聚类分配给了训练观测值。然后也

predict(result, xNew / sqrt(rowSums(xNew^2)))
#  1  2  3  4  5  6  7  8  9 10 
#  2  2  2  2  2  2  2  2  2  2 

还请注意,我只是在打predict而不是predict.kmeans。这是因为result属于kmeans类,并且会自动选择一个正确的方法。还要注意我如何以向量化的方式规范化数据,而不使用apply