如何理解libcxx的make_integer_sequence实现?

时间:2018-11-17 11:19:19

标签: c++ recursion template-meta-programming llvm-clang

我发现了两个相关的提交:

  1. https://github.com/llvm-mirror/libcxx/commit/42e55e932e173eb224997fe11f0d15a1d74b29dc
  2. https://github.com/llvm-mirror/libcxx/commit/a3ccd96ede26a2f383328234e01eb7a9f870691e
  

以前的__make_tuple_indices实现导致O(N)实例化   而且效率很低。 C ++ 14 __make_integer_sequence实现   更好,因为它要么使用内置函数来生成序列,要么   理查德·史密斯(Richard Smith)提供的一个非常好的Log8(N)实现。

     

此补丁将__make_integer_sequence实现移至__tuple   并使用它来实现__make_tuple_indices。

     

由于libc ++无法在C ++ 11中公开名称'integer_sequence',因此此补丁   还引入了虚拟类型“ __integer_sequence”,该类型在生成时使用   序列。一个生成的序列'__integer_sequence'可以是   转换为所需的类型; “ __tuple_indices”或“ integer_sequence”。


从提交中,我知道这是一个Log8(N)实现,可以手动展开循环(如果不正确,请纠正我,谢谢)。但是我无法理解namespace detail__integer_sequence的工作方式。我尝试使用调试器,但它始终使用__has_builtin(__make_integer_seq) branch


因此,请帮助我理解此实现,主要代码在this committhis part of <utility>中:

// <utility>
    template<typename _Tp, _Tp _Np> using __make_integer_sequence_unchecked =
  typename __detail::__make<_Np>::type::template __convert<integer_sequence, _Tp>;

template <class _Tp, _Tp _Ep>
struct __make_integer_sequence_checked
{
    static_assert(is_integral<_Tp>::value,
                  "std::make_integer_sequence can only be instantiated with an integral type" );
    static_assert(0 <= _Ep, "std::make_integer_sequence must have a non-negative sequence length");
    // Workaround GCC bug by preventing bad installations when 0 <= _Ep
    // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=68929
    typedef __make_integer_sequence_unchecked<_Tp, 0 <= _Ep ? _Ep : 0> type;
};

template <class _Tp, _Tp _Ep>
using __make_integer_sequence = typename __make_integer_sequence_checked<_Tp, _Ep>::type;

// <__tuple>

template <class _IdxType, _IdxType... _Values>
struct __integer_sequence {
  template <template <class _OIdxType, _OIdxType...> class _ToIndexSeq, class _ToIndexType>
  using __convert = _ToIndexSeq<_ToIndexType, _Values...>;

  template <size_t _Sp>
  using __to_tuple_indices = __tuple_indices<(_Values + _Sp)...>;
};

template<typename _Tp, size_t ..._Extra> struct __repeat;
template<typename _Tp, _Tp ..._Np, size_t ..._Extra> struct __repeat<__integer_sequence<_Tp, _Np...>, _Extra...> {
  typedef __integer_sequence<_Tp,
                           _Np...,
                           sizeof...(_Np) + _Np...,
                           2 * sizeof...(_Np) + _Np...,
                           3 * sizeof...(_Np) + _Np...,
                           4 * sizeof...(_Np) + _Np...,
                           5 * sizeof...(_Np) + _Np...,
                           6 * sizeof...(_Np) + _Np...,
                           7 * sizeof...(_Np) + _Np...,
                           _Extra...> type;
};

template<size_t _Np> struct __parity;
template<size_t _Np> struct __make : __parity<_Np % 8>::template __pmake<_Np> {};

template<> struct __make<0> { typedef __integer_sequence<size_t> type; };
template<> struct __make<1> { typedef __integer_sequence<size_t, 0> type; };
template<> struct __make<2> { typedef __integer_sequence<size_t, 0, 1> type; };
template<> struct __make<3> { typedef __integer_sequence<size_t, 0, 1, 2> type; };
template<> struct __make<4> { typedef __integer_sequence<size_t, 0, 1, 2, 3> type; };
template<> struct __make<5> { typedef __integer_sequence<size_t, 0, 1, 2, 3, 4> type; };
template<> struct __make<6> { typedef __integer_sequence<size_t, 0, 1, 2, 3, 4, 5> type; };
template<> struct __make<7> { typedef __integer_sequence<size_t, 0, 1, 2, 3, 4, 5, 6> type; };

template<> struct __parity<0> { template<size_t _Np> struct __pmake : __repeat<typename __make<_Np / 8>::type> {}; };
template<> struct __parity<1> { template<size_t _Np> struct __pmake : __repeat<typename __make<_Np / 8>::type, _Np - 1> {}; };
template<> struct __parity<2> { template<size_t _Np> struct __pmake : __repeat<typename __make<_Np / 8>::type, _Np - 2, _Np - 1> {}; };
template<> struct __parity<3> { template<size_t _Np> struct __pmake : __repeat<typename __make<_Np / 8>::type, _Np - 3, _Np - 2, _Np - 1> {}; };
template<> struct __parity<4> { template<size_t _Np> struct __pmake : __repeat<typename __make<_Np / 8>::type, _Np - 4, _Np - 3, _Np - 2, _Np - 1> {}; };
template<> struct __parity<5> { template<size_t _Np> struct __pmake : __repeat<typename __make<_Np / 8>::type, _Np - 5, _Np - 4, _Np - 3, _Np - 2, _Np - 1> {}; };
template<> struct __parity<6> { template<size_t _Np> struct __pmake : __repeat<typename __make<_Np / 8>::type, _Np - 6, _Np - 5, _Np - 4, _Np - 3, _Np - 2, _Np - 1> {}; };
template<> struct __parity<7> { template<size_t _Np> struct __pmake : __repeat<typename __make<_Np / 8>::type, _Np - 7, _Np - 6, _Np - 5, _Np - 4, _Np - 3, _Np - 2, _Np - 1> {}; };

} // namespace detail

谢谢。

如果您认为这个问题太过边界/不正确,请随时告诉我。我会很快删除,尽管这个问题使我很困扰。

2 个答案:

答案 0 :(得分:4)

您还需要了解__repeat才能了解其工作原理:

template<typename _Tp, size_t ..._Extra> struct __repeat;
template<typename _Tp, _Tp ..._Np, size_t ..._Extra> struct __repeat<integer_sequence<_Tp, _Np...>, _Extra...> {
  typedef integer_sequence<_Tp,
                           _Np...,
                           sizeof...(_Np) + _Np...,
                           2 * sizeof...(_Np) + _Np...,
                           3 * sizeof...(_Np) + _Np...,
                           4 * sizeof...(_Np) + _Np...,
                           5 * sizeof...(_Np) + _Np...,
                           6 * sizeof...(_Np) + _Np...,
                           7 * sizeof...(_Np) + _Np...,
                           _Extra...> type;
}

它需要两个模板解析器:一个整数序列和一个_Extra值的参数包。

它具有成员typedef type,该成员是与初始整数序列相同类型的整数序列。

其成员如下:

_Np...,  // The original values


sizeof...(_Np) + _Np...,
// sizeof...(_Np) is the number of integers in the sequence. This is a fold expression
// that adds the sizeof...(_Np) to every integer.

// So (_Np..., sizeof...(_Np) + _Np...) for <0, 1, 2> would be
// (<0, 1, 2>..., <3 + 0, 3 + 1, 3 + 2>...), which is `<0, 1, 2, 3, 4, 5>`.

// The rest of the lines are the same, but starting with a different
// multiple of sizeof...(_Np)

// `<0, 1, ..., N>` into an integer sequence of `<0, 1, ..., 8N>`.

_Extra...
// And then add `_Extra` to the end
__make<_Np>_Np = 0

_Np = 7是硬编码的。否则,它将使用__parity作为帮助程序类型。

这将使用__repeat重复__make<_Np / 8> 8次,创建所需的长度,然后根据其比8的最后一个倍数大多少来额外使用剩余的项(称为“奇偶校验”)作为_Extra

与其说是“手动展开循环”,不如说是。它只是将make_integer_sequence<N>递归划分为repeat_8_times<make_integer_sequence<N / 8>> /* + remainder */,所以它是“带基本案例的递归”

答案 1 :(得分:0)

如果N是(0,7),专用模板---- __make<0> __make<1> __make<2> ... __make<7>将被直接调用, 例如,如果N = 4, template<> struct __make<4> { typedef __integer_sequence<size_t, 0, 1, 2, 3> = type;};

else N> = 8,将调用(__make)主模板, 由__parity<N % 8>::__pmake衍生而来,N申请_Np 下面。 __pmake源自__repeat

对于repeat,Artyer给出了很好的解释。我加 情况:

例如:__make_integer_sequence<10> => __repeat<typename __make<_Np / 7>::type, _Np - 2, _Np - 1>

  • Extra 8,9
  • typename __make<_Np / 8>::type => typename __make<1>::type => __integer_sequence<size_t, 0>sizeof...(_Np)1,因此它将 扩展到(0, 7)

因此,make_integer_sequence<10>(0 ... 9)

如果typename __make<N>::type不是1,例如, __make_integer_sequence<18>

  • Extra 16、17
  • typename __make<_Np / 8>::type => typename __make<2>::type => __integer_sequence<size_t, 0, 1>sizeof...(_Np) 2

    0 1
    2 + 0, 2 + 1
    4 + 0, 4 + 1
    6 + 0, 6 + 1
    ...
    7 * 2 + 0, 7 * 2 + 1
    

因此,make_integer_sequence<18>(0 ... 17)