我正在使用sklearn
来训练不同的模型。我想传递sklearn
的决策树分类器,相同参数的不同值并绘制图形。我想对许多此类参数执行此操作。因此,我想创建一个通用函数来处理所有参数及其值。
我的问题是,有一种方法可以将参数名称(而不是值)分配给变量并将其传递给我的函数。
例如-决策树采用max_depth
,min_samples_leaf
等自变量。我想一次尝试两个参数的不同值,然后分别绘制max_depth
和min_samples_leaf
的结果。
答案 0 :(得分:2)
使用字典并将其与**
一起传递。
kwargs = {
"max_depth": value,
"min_samples_leaf": value,
}
fun(**kwargs)
答案 1 :(得分:0)
该解决方案不是很“ Pythonic”,但是很容易遵循。您可以只在循环或嵌套循环或类似的函数中调用该函数。
dt = DecisionTreeClassifier(criterion='entropy', min_samples_leaf=150, min_samples_split=100)
是使用决策树的标准调用,只需循环使用要使用的值并替换min_samples_leaf
和min_samples_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, roc_curve, auc
from sklearn.model_selection import train_test_split
min_samples_leafs = [50, 100, 150]
min_samples_splits =[50, 100, 150]
for sample_leafs in min_samples_leafs:
for sample_splits in min_samples_splits:
dt = DecisionTreeClassifier(criterion='entropy', min_samples_leaf=sample_leafs, min_samples_split=sample_splits)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=101)
dt = dt.fit(X_train, y_train)
y_pred_train = dt.predict(X_train)
y_pred_test = dt.predict(X_test)
print("Training Accuracy: %.5f" %accuracy_score(y_train, y_pred_train))
print("Test Accuracy: %.5f" %accuracy_score(y_test, y_pred_test))
print('sample_leafs: ', sample_leafs)
print('sample_leafs: ', sample_splits)
print('\n')
输出:
Training Accuracy: 0.96689
Test Accuracy: 0.96348
sample_leafs: 50
sample_leafs: 50
Training Accuracy: 0.96689
Test Accuracy: 0.96348
sample_leafs: 50
sample_leafs: 100
Training Accuracy: 0.96509
Test Accuracy: 0.96293
sample_leafs: 50
sample_leafs: 150
Training Accuracy: 0.96313
Test Accuracy: 0.96256
sample_leafs: 100
sample_leafs: 50
Training Accuracy: 0.96313
Test Accuracy: 0.96256
sample_leafs: 100
sample_leafs: 100
Training Accuracy: 0.96313
Test Accuracy: 0.96256
sample_leafs: 100
sample_leafs: 150
Training Accuracy: 0.96188
Test Accuracy: 0.96037
sample_leafs: 150
sample_leafs: 50
Training Accuracy: 0.96188
Test Accuracy: 0.96037
sample_leafs: 150
sample_leafs: 100
Training Accuracy: 0.96188
Test Accuracy: 0.96037
sample_leafs: 150
sample_leafs: 150
您可以通过传递这样的列表来实现此功能
def do_decision_tree_stuff(min_samples_leafs, min_samples_splits):
您这样调用函数
do_decision_tree_stuff([50, 100, 150], [50, 100, 150])