在有关TensorFlow分布的参考文献paper(现在为Probability)中,提到了TensorFlow Variable
可用于构造Bijector
和TransformedDistribution
对象,即:
import tensorflow as tf
import tensorflow_probability as tfp
tfd = tfp.distributions
tf.enable_eager_execution()
shift = tf.Variable(1., dtype=tf.float32)
myBij = tfp.bijectors.Affine(shift=shift)
# Normal distribution centered in zero, then shifted to 1 using the bijection
myDistr = tfd.TransformedDistribution(
distribution=tfd.Normal(loc=0., scale=1.),
bijector=myBij,
name="test")
# 2 samples of a normal centered at 1:
y = myDistr.sample(2)
# 2 samples of a normal centered at 0, obtained using inverse transform of myBij:
x = myBij.inverse(y)
我现在想修改shift变量(例如,我可以根据该shift计算某些似然函数的梯度并更新其值)
shift.assign(2.)
gx = myBij.forward(x)
我希望有gx=y+1
,但我看到gx=y
...的确,myBij.shift
仍然等于1
。
如果我尝试直接修改Bijector,即:
myBij.shift.assign(2.)
我明白了
AttributeError: 'tensorflow.python.framework.ops.EagerTensor' object has no attribute 'assign'
计算梯度也无法按预期工作:
with tf.GradientTape() as tape:
gx = myBij.forward(x)
grad = tape.gradient(gx, shift)
产生None
,以及脚本结束时出现以下异常:
Exception ignored in: <bound method GradientTape.__del__ of <tensorflow.python.eager.backprop.GradientTape object at 0x7f529c4702e8>>
Traceback (most recent call last):
File "~/.local/lib/python3.6/site-packages/tensorflow/python/eager/backprop.py", line 765, in __del__
AttributeError: 'NoneType' object has no attribute 'context'
我在这里想念什么?
编辑:我可以在图形/会话中使用它,所以似乎渴望执行有问题...
注意:我有tensorflow版本1.12.0和tensorflow_probability版本0.5.0
答案 0 :(得分:1)
如果使用急切模式,则需要重新计算从变量开始的所有内容。最好在函数中捕获此逻辑;
import tensorflow as tf
import tensorflow_probability as tfp
tfd = tfp.distributions
tf.enable_eager_execution()
shift = tf.Variable(1., dtype=tf.float32)
def f():
myBij = tfp.bijectors.Affine(shift=shift)
# Normal distribution centered in zero, then shifted to 1 using the bijection
myDistr = tfd.TransformedDistribution(
distribution=tfd.Normal(loc=0., scale=1.),
bijector=myBij,
name="test")
# 2 samples of a normal centered at 1:
y = myDistr.sample(2)
# 2 samples of a normal centered at 0, obtained using inverse
# transform of myBij:
x = myBij.inverse(y)
return x, y
x, y = f()
shift.assign(2.)
gx, _ = f()
关于渐变,您需要将对f()
的调用包装到GradientTape