.cfg文件中描述了网络的结构(请参见下文)。 “块”以[.....]
开头所有使用的过滤器是:
1x1图层跨步1并且填充= 1->功能图=(宽度+2,高度+2,深度)
上采样层->我读到它乘以高度和宽度的2倍
路线:
我不理解“ [route] Layers:-1,8”所应用的串联,因为如果我正确的话,它将32x32x ...与26x26x ...串联,这在技术上是不可能的吗? / p>
我重写了cfg文件,使其更易于可视化。您能告诉我我的抄写是否正确以及这种串联的工作方式吗? (我不理解的结果功能图用红色表示。)
my transcription of the cfg file
[\[net\]
# Testing
batch=1
subdivisions=1
# Training
# batch=64
# subdivisions=2
width=416
height=416
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1
learning_rate=0.001
burn_in=1000
max_batches = 500200
policy=steps
steps=400000,450000
scales=.1,.1
\[convolutional\]
batch_normalize=1
filters=16
size=3
stride=1
pad=1
activation=leaky
\[maxpool\]
size=2
stride=2
\[convolutional\]
batch_normalize=132
filters=32
size=3
stride=1
pad=1
activation=leaky
\[maxpool\]
size=2
stride=2
\[convolutional\]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
\[maxpool\]
size=2
stride=2
\[convolutional\]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
\[maxpool\]
size=2
stride=2
\[convolutional\]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
\[maxpool\]
size=2
stride=2
\[convolutional\]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
\[maxpool\]
size=2
stride=1
\[convolutional\]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
###########
\[convolutional\]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
\[convolutional\]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
\[convolutional\]
size=1
stride=1
pad=1
filters=255
activation=linear
\[yolo\]
mask = 3,4,5
anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
classes=80
num=6
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
\[route\]
layers = -4
\[convolutional\]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
\[upsample\]
stride=2
\[route\]
layers = -1, 8
\[convolutional\]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
\[convolutional\]
size=1
stride=1
pad=1
filters=255
activation=linear
\[yolo\]
mask = 0,1,2
anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
classes=80
num=6
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1