我想用先前的N
行值的平均值来填充缺失值,示例如下所示:
N=2
df = pd.DataFrame([[np.nan, 2, np.nan, 0],
[3, 4, np.nan, 1],
[np.nan, np.nan, np.nan, 5],
[np.nan, 3, np.nan, np.nan]],
columns=list('ABCD'))
DataFrame就像:
A B C D
0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 NaN NaN NaN 5
3 NaN 3.0 NaN NaN
结果应为:
A B C D
0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 NaN (4+2)/2 NaN 5
3 NaN 3.0 NaN (1+5)/2
我想知道是否有一种优雅而又快速的方法来实现此目的而无需for循环。
答案 0 :(得分:6)
rolling
+ mean
+ shift
在前两个值之一为空的情况下,您需要修改以下逻辑以解释NaN
和另一个值的均值。
df = df.fillna(df.rolling(2).mean().shift())
print(df)
A B C D
0 NaN 2.0 NaN 0.0
1 3.0 4.0 NaN 1.0
2 NaN 3.0 NaN 5.0
3 NaN 3.0 NaN 3.0