这是我的玩具数据:
df <- tibble::tribble(
~var1, ~var2, ~var3, ~var4, ~var5, ~var6, ~var7,
"A", "C", 1L, 5L, "AA", "AB", 1L,
"A", "C", 2L, 5L, "BB", "AC", 2L,
"A", "D", 1L, 7L, "AA", "BC", 2L,
"A", "D", 2L, 3L, "BB", "CC", 1L,
"B", "C", 1L, 8L, "AA", "AB", 1L,
"B", "C", 2L, 6L, "BB", "AC", 2L,
"B", "D", 1L, 9L, "AA", "BC", 2L,
"B", "D", 2L, 6L, "BB", "CC", 1L)
以下链接中的原始问题 https://stackoverflow.com/a/53110342/6762788是:
如何获得最小数量的变量的组合,这些变量可以唯一地标识数据帧中的观测值,即哪些变量可以共同构成主键?非常感谢thelatemail,以下答案/代码可以正常工作。
nms <- unlist(lapply(seq_len(length(df)), combn, x=names(df), simplify=FALSE), rec=FALSE)
out <- data.frame(
vars = vapply(nms, paste, collapse=",", FUN.VALUE=character(1)),
counts = vapply(nms, function(x) nrow(unique(df[x])), FUN.VALUE=numeric(1))
)
现在,要使其适用于大数据,我想将其带到SparkR。利用此答案,谁能帮助我在SparkR中翻译此代码?如果在SparkR中很难,则在sparklyr中。
答案 0 :(得分:0)
我将上述问题分解为小段,并尝试了以下SparkR代码。但是,“ counts <-lapply(nms,...”)行似乎非常慢。利用此代码,您是否可以建议通过改进“ counts <-lapply(nms,...”)来进一步提高性能。线。
library(SparkR); library(tidyverse)
df_spark <- mtcars %>% as.DataFrame()
num_m <- seq_len(ncol(df_spark))
nam_list <- SparkR::colnames(df_spark)
combinations <- function(num_m) {
combn(num_m, x=nam_list, simplify=FALSE)
}
nms <- spark.lapply(num_m, combinations) %>% unlist(rec=FALSE)
vars = map_chr(nms, ~paste(.x, collapse = ","))
counts <- lapply(nms, function(x) df_spark %>% SparkR::select(x) %>% SparkR::distinct() %>% SparkR::count()) %>% unlist()
out <- data.frame(
vars = vars,
counts = counts
)
primarykeys <- out %>%
dplyr::mutate(n_vars = str_count(vars, ",")+1) %>%
dplyr::filter(counts==nrow(df)) %>%
dplyr::filter(n_vars==min(n_vars))
primarykeys