可以通过以下链接下载卫星图像和相关标签: Satellite image and associated labels
此外,我编写了以下代码来为Unet准备数据
df_new
此外,我在kaggle上找到了以下U-net,我认为该U-net必须针对这种特殊情况起作用:
rename
我知道这是一个大问题,但是我变得非常绝望。任何帮助将不胜感激!
亲切的问候,
Eeuwigestudent1
答案 0 :(得分:1)
我发现Conv2DTranspose比UpSampling2D更好,这是使用相同的快速实现
def conv_block(tensor, nfilters, size=3, padding='same', initializer="he_normal"):
x = Conv2D(filters=nfilters, kernel_size=(size, size), padding=padding, kernel_initializer=initializer)(tensor)
x = BatchNormalization()(x)
x = Activation("relu")(x)
x = Conv2D(filters=nfilters, kernel_size=(size, size), padding=padding, kernel_initializer=initializer)(x)
x = BatchNormalization()(x)
x = Activation("relu")(x)
return x
def deconv_block(tensor, residual, nfilters, size=3, padding='same', strides=(2, 2)):
y = Conv2DTranspose(nfilters, kernel_size=(size, size), strides=strides, padding=padding)(tensor)
y = concatenate([y, residual], axis=3)
y = conv_block(y, nfilters)
return y
def Unet(img_height, img_width, nclasses=3, filters=64):
# down
input_layer = Input(shape=(img_height, img_width, 3), name='image_input')
conv1 = conv_block(input_layer, nfilters=filters)
conv1_out = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = conv_block(conv1_out, nfilters=filters*2)
conv2_out = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = conv_block(conv2_out, nfilters=filters*4)
conv3_out = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = conv_block(conv3_out, nfilters=filters*8)
conv4_out = MaxPooling2D(pool_size=(2, 2))(conv4)
conv4_out = Dropout(0.5)(conv4_out)
conv5 = conv_block(conv4_out, nfilters=filters*16)
conv5 = Dropout(0.5)(conv5)
# up
deconv6 = deconv_block(conv5, residual=conv4, nfilters=filters*8)
deconv6 = Dropout(0.5)(deconv6)
deconv7 = deconv_block(deconv6, residual=conv3, nfilters=filters*4)
deconv7 = Dropout(0.5)(deconv7)
deconv8 = deconv_block(deconv7, residual=conv2, nfilters=filters*2)
deconv9 = deconv_block(deconv8, residual=conv1, nfilters=filters)
# output
output_layer = Conv2D(filters=nclasses, kernel_size=(1, 1))(deconv9)
output_layer = BatchNormalization()(output_layer)
output_layer = Activation('softmax')(output_layer)
model = Model(inputs=input_layer, outputs=output_layer, name='Unet')
return model
现在对于数据生成器,您可以使用内置的ImageDataGenerator类 这是Keras文档中的代码
# we create two instances with the same arguments
data_gen_args = dict(featurewise_center=True,
featurewise_std_normalization=True,
rotation_range=90,
width_shift_range=0.1,
height_shift_range=0.1,
zoom_range=0.2)
image_datagen = ImageDataGenerator(**data_gen_args)
mask_datagen = ImageDataGenerator(**data_gen_args)
# Provide the same seed and keyword arguments to the fit and flow methods
seed = 1
image_datagen.fit(images, augment=True, seed=seed)
mask_datagen.fit(masks, augment=True, seed=seed)
image_generator = image_datagen.flow_from_directory(
'data/images',
class_mode=None,
seed=seed)
mask_generator = mask_datagen.flow_from_directory(
'data/masks',
class_mode=None,
seed=seed)
# combine generators into one which yields image and masks
train_generator = zip(image_generator, mask_generator)
model.fit_generator(
train_generator,
steps_per_epoch=2000,
epochs=50)
另一种可行的方法是通过从Keras扩展Sequence类来实现自己的生成器
class seg_gen(Sequence):
def __init__(self, x_set, y_set, batch_size, image_dir, mask_dir):
self.x, self.y = x_set, y_set
self.batch_size = batch_size
self.samples = len(self.x)
self.image_dir = image_dir
self.mask_dir = mask_dir
def __len__(self):
return int(np.ceil(len(self.x) / float(self.batch_size)))
def __getitem__(self, idx):
idx = np.random.randint(0, self.samples, batch_size)
batch_x, batch_y = [], []
drawn = 0
for i in idx:
_image = image.img_to_array(image.load_img(f'{self.image_dir}/{self.x[i]}', target_size=(img_height, img_width)))/255.
mask = image.img_to_array(image.load_img(f'{self.mask_dir}/{self.y[i]}', grayscale=True, target_size=(img_height, img_width)))
# mask = np.resize(mask,(img_height*img_width, classes))
batch_y.append(mask)
batch_x.append(_image)
return np.array(batch_x), np.array(batch_y)
以下是用于训练模型的示例代码
unet = Unet(256, 256, nclasses=66, filters=64)
print(unet.output_shape)
p_unet = multi_gpu_model(unet, 4)
p_unet.load_weights('models-dr/top_weights.h5')
p_unet.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
tb = TensorBoard(log_dir='logs', write_graph=True)
mc = ModelCheckpoint(mode='max', filepath='models-dr/top_weights.h5', monitor='acc', save_best_only='True', save_weights_only='True', verbose=1)
es = EarlyStopping(mode='max', monitor='acc', patience=6, verbose=1)
callbacks = [tb, mc, es]
train_gen = seg_gen(image_list, mask_list, batch_size)
p_unet.fit_generator(train_gen, steps_per_epoch=steps, epochs=13, callbacks=callbacks, workers=8)
当我只有两个班级时,我尝试过使用骰子损失,这是它的代码
def dice_coeff(y_true, y_pred):
smooth = 1.
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
score = (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
return score
def dice_loss(y_true, y_pred):
loss = 1 - dice_coeff(y_true, y_pred)
return loss