我正在尝试微调Keras中的模型:
inception_model = InceptionV3(weights=None, include_top=False, input_shape=(150,
150, 1))
x = inception_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(256, activation='relu', name='fc1')(x)
x = Dropout(0.5)(x)
predictions = Dense(10, activation='softmax', name='predictions')(x)
classifier = Model(inception_model.input, predictions)
####training training training ... save weights
classifier.load_weights("saved_weights.h5")
classifier.layers.pop()
classifier.layers.pop()
classifier.layers.pop()
classifier.layers.pop()
###enough poping to reach standard InceptionV3
x = classifier.output
x = GlobalAveragePooling2D()(x)
x = Dense(256, activation='relu', name='fc1')(x)
x = Dropout(0.5)(x)
predictions = Dense(10, activation='softmax', name='predictions')(x)
classifier = Model(classifier.input, predictions)
但是我得到了错误:
ValueError: Input 0 is incompatible with layer global_average_pooling2d_3: expected ndim=4, found ndim=2
答案 0 :(得分:0)
您使用功能性API(即pop()
)创建的模型上的shouldn't use keras.models.Model
方法。仅顺序模型(即keras.models.Sequential
)具有内置的pop()
方法(用法:model.pop()
)。而是使用索引或图层名称访问特定图层:
classifier.load_weights("saved_weights.h5")
x = classifier.layers[-5].output # use index of the layer directly
x = GlobalAveragePooling2D()(x)