熊猫数据框:查找共享价值的条目(例如,所有包含玩家的游戏)

时间:2018-11-15 01:49:42

标签: python python-3.x pandas

我有一个羽毛球俱乐部比赛历史记录的CSV文件。我希望能够找到有关包含给定玩家的游戏的信息(例如,“比尔”和谁玩得最多?)。这是两个三场比赛的回合示例:

import pandas as pd
player_data = player_data = pd.DataFrame(data=[
('2018-06-12', 1, 1, 1, 'Adam'),
 ('2018-06-12', 1, 1, 2, 'Bill'),
 ('2018-06-12', 1, 1, 3, 'Cindy'),
 ('2018-06-12', 1, 1, 4, 'Derek'),
 ('2018-06-12', 1, 2, 1, 'Edward'),
 ('2018-06-12', 1, 2, 2, 'Fred'),
 ('2018-06-12', 1, 2, 3, 'George'),
 ('2018-06-12', 1, 2, 4, 'Harry'),
 ('2018-06-12', 1, 3, 1, 'Ian'),
 ('2018-06-12', 1, 3, 2, 'Jack'),
 ('2018-06-12', 1, 3, 3, 'Karl'),
 ('2018-06-12', 1, 3, 4, 'Laura'),
 ('2018-06-12', 2, 1, 1, 'Karl'),
 ('2018-06-12', 2, 1, 2, 'Cindy'),
 ('2018-06-12', 2, 1, 3, 'Bill'),
 ('2018-06-12', 2, 1, 4, 'Derek'),
 ('2018-06-12', 2, 2, 1, 'Max'),
 ('2018-06-12', 2, 2, 2, 'George'),
('2018-06-12', 2, 2, 3, 'Fred'),
 ('2018-06-12', 2, 2, 4, 'Ian'),
 ('2018-06-12', 2, 3, 1, 'Nigel'),
 ('2018-06-12', 3, 3, 2, 'Edward'),
 ('2018-06-12', 3, 3, 3, 'Harry'),
 ('2018-06-12', 3, 3, 4, 'Adam')],   
columns=['Date', 'Round #', 'Court #', 'Space', 'Name'])

但是,由于每一行都是单个玩家的条目,因此只需按名称即可定位,例如

player_data.loc[player_data['Name'] == 'Bill']

仅将返回Bill的各个条目,就像这样:

    Date    Round # Court # Space   Name

    1 2018-06-12    1   1   2   Bill
    14 2018-06-12   2   1   3   Bill

...当我想要的是一个新的数据框,其中包含比尔玩过的游戏的所有条目时,在这种情况下,它将显示为:

Date    Round # Court # Space   Name
0   2018-06-12  1   1   1   Adam
1   2018-06-12  1   1   2   Bill
2   2018-06-12  1   1   3   Cindy
3   2018-06-12  1   1   4   Derek
12  2018-06-12  2   1   1   Karl
13  2018-06-12  2   1   2   Cindy
14  2018-06-12  2   1   3   Bill
15  2018-06-12  2   1   4   Derek

我认为将原始数据帧转换为一个更容易,其中每个条目都是一个单独的游戏,该游戏的所有玩家名称都列在元组中,因此检查“是否名称中的名称”?例如

Date    Round # Court # Names
    0   2018-06-12  1   1   (Adam, Bill, Cindy, Derek)

...但是可能会导致其他问题。

2 个答案:

答案 0 :(得分:3)

使用merge

进行过滤之后
s1=player_data.loc[player_data['Name'] == 'Bill',['Date','Round #','Court #']]
s2=s1.merge(player_data,how='left')
s2
Out[12]: 
         Date  Round #  Court #  Space   Name
0  2018-06-12        1        1      1   Adam
1  2018-06-12        1        1      2   Bill
2  2018-06-12        1        1      3  Cindy
3  2018-06-12        1        1      4  Derek
4  2018-06-12        2        1      1   Karl
5  2018-06-12        2        1      2  Cindy
6  2018-06-12        2        1      3   Bill
7  2018-06-12        2        1      4  Derek

答案 1 :(得分:0)

我的方法是:

bill_player_data = player_data.loc[player_data['Name'] == 'Bill']
ro = bill_player_data['Round #']
co = bill_player_data['Court #']
bill = player_data.loc[player_data['Round #'].isin(ro)]
bill = bill.loc[bill['Court #'].isin(co)]
bill