如果我运行以下代码:
import asyncio
import time
import concurrent.futures
def cpu_bound(mul):
for i in range(mul*10**8):
i+=1
print('result = ', i)
return i
async def say_after(delay, what):
print('sleeping async...')
await asyncio.sleep(delay)
print(what)
# The run_in_pool function must not block the event loop
async def run_in_pool():
with concurrent.futures.ProcessPoolExecutor() as executor:
result = executor.map(cpu_bound, [1, 1, 1])
async def main():
task1 = asyncio.create_task(say_after(0.1, 'hello'))
task2 = asyncio.create_task(run_in_pool())
task3 = asyncio.create_task(say_after(0.1, 'world'))
print(f"started at {time.strftime('%X')}")
await task1
await task2
await task3
print(f"finished at {time.strftime('%X')}")
if __name__ == '__main__':
asyncio.run(main())
输出为:
started at 18:19:28
sleeping async...
result = 100000000
result = 100000000
result = 100000000
sleeping async...
hello
world
finished at 18:19:34
这表明事件循环一直阻塞,直到CPU绑定的作业(task2
)完成,然后再继续task3
。
如果我仅运行一项CPU绑定作业(run_in_pool
是以下一项):
async def run_in_pool():
loop = asyncio.get_running_loop()
with concurrent.futures.ProcessPoolExecutor() as executor:
result = await loop.run_in_executor(executor, cpu_bound, 1)
然后似乎事件循环不会阻塞,因为输出是:
started at 18:16:23
sleeping async...
sleeping async...
hello
world
result = 100000000
finished at 18:16:28
如何在进程池中运行许多CPU绑定作业(在task2
中)而不会阻塞事件循环?
答案 0 :(得分:3)
正如您发现的那样,您需要使用asyncio自己的run_in_executor
等待提交的任务完成,而不会阻塞事件循环。 Asyncio没有提供与map
等效的功能,但是要模仿它并不难:
async def run_in_pool():
with concurrent.futures.ProcessPoolExecutor() as executor:
futures = [loop.run_in_executor(executor, cpu_bound, i)
for i in (1, 1, 1)]
result = await asyncio.gather(*futures)