我正在基于另一列中的子字符串更新一列。这是通过遍历行来完成的。
import pandas as pd
my_DestSystemNote1_string = 'ISIN=XS1906311763|CUSIP= |CalTyp=1'
dfDest = [('DestSystemNote1', ['ISIN=XS1906311763|CUSIP= |CalTyp=1',
'ISIN=XS0736418962|CUSIP= |CalTyp=1',
'ISIN=XS1533910508|CUSIP= |CalTyp=1',
'ISIN=US404280AS86|CUSIP=404280AS8|CalTyp=1',
'ISIN=US404280BW89|CUSIP=404280BW8|CalTyp=21',
'ISIN=US06738EBC84|CUSIP=06738EBC8|CalTyp=21',
'ISIN=XS0736418962|CUSIP= |CalTyp=1',]),
]
# create pandas df
dfDest = pd.DataFrame.from_items(dfDest)
def findnth(haystack, needle, n):
parts= haystack.split(needle, n+1)
if len(parts)<=n+1:
return -1
return len(haystack)-len(parts[-1])-len(needle)
def split_between(input_string,
start_str, start_occurence,
end_str, end_occurence
):
start_index = findnth(input_string, start_str, start_occurence-1) + len(start_str)
end_index = findnth(input_string, end_str, end_occurence-1) + len(end_str) -1
return input_string[start_index:end_index]
dfDest['FOUND_ISIN'] = ""
dfDest['FOUND_CUSIP'] = ""
dfDest.info()
for index, row in dfDest.iterrows():
try:
print(row.DestSystemNote1)
row.FOUND_ISIN = split_between(row.DestSystemNote1, "ISIN=", 1, "|", 1)
row.FOUND_CUSIP = split_between(row.DestSystemNote1, "CUSIP=", 1, "|", 2)
# print ('DestSystemNote1=' + row.DestSystemNote1 + " " + 'FOUND_ISIN= ' + row.FOUND_ISIN)
# print ('DestSystemNote1=' + row.DestSystemNote1 + " " + 'FOUND_CUSIP= ' + row.FOUND_CUSIP)
except:
pass # doing nothing on exception
为帮助我的学习,我想做同样的事情,但使用带有lambda函数的apply方法,即更新第三列FOUND_ISIN2
,但我得到TypeError: string indices must be integers
dfDest['FOUND_ISIN2'] = dfDest["DestSystemNote1"].apply(lambda x: split_between(x['DestSystemNote1'], "ISIN=", 1, "|", 1))
将示例字符串放入函数中时,它会返回一个值
dfDest['FOUND_ISIN2'] = dfDest["DestSystemNote1"].apply(lambda x: split_between('ISIN=XS1906311763|CUSIP= |CalTyp=1',"ISIN=", 1, "|", 1) )
因此,考虑到这一点,我尝试将DestSystemNote1
转换为字符串,但错误再次出现
dfDest['FOUND_ISIN2'] = dfDest["DestSystemNote1"].apply(lambda x: split_between(x['DestSystemNote1'].astype('str'), "ISIN=", 1, "|", 1))
使用.apply时,是否将解析为函数的值转换为字符串?这到底是怎么回事?
答案 0 :(得分:1)
您不需要lambda
或apply
。坚持熊猫,您就可以分三个步骤完成(也许也可以用更少的步骤完成):
# 1 - Create DataFrame
import pandas as pd
dfDest = pd.DataFrame.from_items(dfDest)
# 2 - String parsing
cols = ['ISIN','CUSIP', 'CalTyp'] # Define Columns
dfDest[cols] = dfDest['DestSystemNote1'].str.split('|', n=-1, expand=True) # Split Strings to columns
# 3 - Replace unwanted parts of raw data
for header in cols: # look at every column and remove its header string from the data
dfDest[header] = dfDest[header].str.replace(header + "=", '') # and add "=" to pattern you want to remove
print dfDest
输出:
DestSystemNote1 ISIN CUSIP CalTyp
0 ISIN=XS1906311763|CUSIP= |CalTyp=1 XS1906311763 1
1 ISIN=XS0736418962|CUSIP= |CalTyp=1 XS0736418962 1
2 ISIN=XS1533910508|CUSIP= |CalTyp=1 XS1533910508 1
3 ISIN=US404280AS86|CUSIP=404280AS8|CalTyp=1 US404280AS86 404280AS8 1
4 ISIN=US404280BW89|CUSIP=404280BW8|CalTyp=21 US404280BW89 404280BW8 21
5 ISIN=US06738EBC84|CUSIP=06738EBC8|CalTyp=21 US06738EBC84 06738EBC8 21
6 ISIN=XS0736418962|CUSIP= |CalTyp=1 XS0736418962 1
快乐的编码。