我试图找到离群数的索引号。根据与中位数的差异 我能够获得正确的高数字,但是只要低数字是异常值,我就只会得到高数字。
import numpy as np
def findoutlier(lis):
outliermax = np.absolute(np.max(lis) - np.median(lis))
outliermin = np.absolute(np.min(lis) - np.median(lis))
if outliermax > outliermin:
argmax = np.argmax(lis, axis = 1)
return argmax
else:
argmin = np.argmin(lis, axis = 1)
return argmin
def main():
Matx = np.array([[10,3,2],[1,2,6]])
print(findoutlier(Matx))
threeMatx = np.array([[1,10,2,8,5],[2,7,3,9,11],[19,2,1,1,5]])
print(findoutlier(threeMatx))
main()
答案 0 :(得分:1)
使用中位数,最大值和最小值时需要指定轴:
import numpy as np
def findoutlier(lis):
omaxs = np.absolute(np.max(lis, axis=1) - np.median(lis, axis=1))
omins = np.absolute(np.min(lis, axis=1) - np.median(lis, axis=1))
return [np.argmax(l) if omax > omin else np.argmin(l) for omax, omin, l in zip(omaxs, omins, lis)]
def main():
mat_x = np.array([[10, 3, 2], [1, 2, 6]])
print(findoutlier(mat_x))
three_mat_x = np.array([[1, 10, 2, 8, 5], [2, 7, 3, 9, 11], [19, 2, 1, 1, 5]])
print(findoutlier(three_mat_x))
输出
[0, 2]
[1, 0, 0]
更新
如@ user3483203所述,您可以使用numpy.where:
import numpy as np
def findoutlier(lis):
omaxs = np.absolute(np.max(lis, axis=1) - np.median(lis, axis=1))
omins = np.absolute(np.min(lis, axis=1) - np.median(lis, axis=1))
return np.where(omaxs > omins, np.argmax(lis, axis=1), np.argmin(lis, axis=1))
def main():
mat_x = np.array([[10, 3, 2], [1, 2, 6]])
print(findoutlier(mat_x))
three_mat_x = np.array([[1, 10, 2, 8, 5], [2, 7, 3, 9, 11], [19, 2, 1, 1, 5]])
print(findoutlier(three_mat_x))
main()
输出
[0 2]
[1 0 0]