我有一个data
,我正尝试将其存储在pandas
dataFrame中。但是,它以一种奇怪的方式出现。我知道我做错了
有人可以帮助我找出问题所在吗?
代码
root@optstra:~# cat pandas_1.py
import pandas as pd
import numpy as np
numberOfRows = 1
SYMBOL = 'ABB'
volume_increasing = True
price_increase = True
OI_CHANGE = True
closedAboveYesterday = False
Above_22SMA = False
data_frame = pd.DataFrame(index=np.arange(0, numberOfRows), columns=('SYMBOL','Volume', 'Price', 'OI','OHLC','22SMA') )
for x in range(0,numberOfRows):
data_frame.loc[x] = [{SYMBOL,volume_increasing,price_increase,OI_CHANGE,closedAboveYesterday,Above_22SMA} for n in range(6)]
print(data_frame)
输出
root@optstra:~# python3 pandas_1.py
SYMBOL Volume Price OI OHLC 22SMA
0 {False, True, ABB} {False, True, ABB} {False, True, ABB} {False, True, ABB} {False, True, ABB} {False, True, ABB}
如果我按如下所述更改将数据写入数据帧的行
for x in range(0,numberOfRows):
data_frame.loc[x] = [(SYMBOL,volume_increasing,price_increase,OI_CHANGE,closedAboveYesterday,Above_22SMA) for n in range(6)]
输出更改为
root@optstra:~# python3 pandas_1.py
SYMBOL ... 22SMA
0 (ABB, True, True, True, False, False) ... (ABB, True, True, True, False, False)
答案 0 :(得分:2)
您为什么不尝试此操作-不确定是否正是您要查找的内容,因为您已在编辑中删除了该部分:
for x in range(0,numberOfRows):
data_frame.loc[x] = [SYMBOL,volume_increasing,price_increase,OI_CHANGE,closedAboveYesterday,Above_22SMA]
输出:
SYMBOL Volume Price OI OHLC 22SMA
0 ABB True True True False False
答案 1 :(得分:2)
Updating an empty frame (e.g. using loc one-row-at-a-time)效率低下。
因此,更好/更快的方法是在列表中附加DataFrame
建设者:
data = []
for x in np.arange(numberOfRows):
row = [SYMBOL,volume_increasing,price_increase,OI_CHANGE,closedAboveYesterday,Above_22SMA]
data.append(row)
c = ('SYMBOL','Volume', 'Price', 'OI','OHLC','22SMA')
data_frame = pd.DataFrame(data, columns=c)
list comprehension alternative
:
data = [[SYMBOL,volume_increasing,price_increase,OI_CHANGE,closedAboveYesterday,Above_22SMA] for x in np.arange(numberOfRows)]
答案 2 :(得分:0)
在我看来,您没有为数据帧正确建立索引。您可以执行以下操作:
for x in range(0, numberOfRows):
data_frame['SYMBOL'][x] = SYMBOL
data_frame['Volume'][x] = volume_increasing
data_frame['Price'][x] = price_increase
data_frame['OI'][x] = OI_CHANGE
data_frame['OHLC'][x] = closedAboveYesterday
data_frame['22SMA'][x] = Above_22SMA
这将为您提供所需的输出,或者,您也可以使用字典并完全避免使用for循环:
columns = ['SYMBOL','Volume', 'Price', 'OI','OHLC','22SMA']
data = {'SYMBOL': 'AAB',
'Volume': True,
'Price': True,
'OI': True,
'OHLC': False,
'22SMA': False}
data_frame = pd.DataFrame(data=data, index=np.arange(0, 1), columns=columns)