答案 0 :(得分:2)
y <- c(0.00904977380111,0.009174311972687,0.022573363475789,0.081632653008122,0.005571030584803,1e-04,0.02375296916921,0.004962779106823,0.013729977117333,0.00904977380111,0.004514672640982,0.016528925619835,1e-04,0.027855153258277,0.011834319585449,0.024999999936719,1e-04,0.026809651528869,0.016348773841071,1e-04,0.009345794439034,0.00457665899303,0.004705882305772,0.023201856194357,1e-04,0.033734939711656,0.014251781472007,0.004662004755245,0.009259259166667,0.056872037917387,0.018518518611111,0.014598540145986,0.009478673032951,0.023529411811211,0.004819277060357,0.018691588737881,0.018957345923721,0.005390835525461,0.056179775223141,0.016348773841071,0.01104972381185,0.010928961639344,1e-04,1e-04,0.010869565271444,0.011363636420778,0.016085790883856,0.016,0.005665722322786,0.01117318441372,0.028818443860841,1e-04,0.022988505862069,0.01010101,1e-04,0.018083182676638,0.00904977380111,0.00961538466323,0.005390835525461,0.005763688703004,1e-04,0.005571030584803,1e-04,0.014388489208633,0.005633802760722,0.005633802760722,1e-04,0.005361930241431,0.005698005811966,0.013986013986014,1e-04,1e-04)
x <- c(600,600,600,600,600,600,600,600,600,600,600,600,600,600,600,600,600,600,600,600,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,744.47,744.47,744.47,744.47,744.47,744.47,744.47,630.42,630.42,630.42,630.42,630.42,630.42,630.42,630.42,630.42)
hist(y,breaks=15)
plot(y~x)
fit <- glm(y~x,family='Gamma'(link='log'))
abline(fit)
通过简单的线性回归绘制线性函数。具有Gamma族和对数链接的GLM在原始比例上是非线性的。要可视化此类模型的拟合度,可以使用abline
(下面给出一个示例)。存在一些R的软件包(例如effects
或visreg
),这些软件包具有一些功能,可让您直接在原始标度上绘制拟合,包括置信区间。
以下是使用predict
并使用您的数据和模型的示例:
visreg
以下是使用R基本图形和library(visreg)
y <- c(0.00904977380111,0.009174311972687,0.022573363475789,0.081632653008122,0.005571030584803,1e-04,0.02375296916921,0.004962779106823,0.013729977117333,0.00904977380111,0.004514672640982,0.016528925619835,1e-04,0.027855153258277,0.011834319585449,0.024999999936719,1e-04,0.026809651528869,0.016348773841071,1e-04,0.009345794439034,0.00457665899303,0.004705882305772,0.023201856194357,1e-04,0.033734939711656,0.014251781472007,0.004662004755245,0.009259259166667,0.056872037917387,0.018518518611111,0.014598540145986,0.009478673032951,0.023529411811211,0.004819277060357,0.018691588737881,0.018957345923721,0.005390835525461,0.056179775223141,0.016348773841071,0.01104972381185,0.010928961639344,1e-04,1e-04,0.010869565271444,0.011363636420778,0.016085790883856,0.016,0.005665722322786,0.01117318441372,0.028818443860841,1e-04,0.022988505862069,0.01010101,1e-04,0.018083182676638,0.00904977380111,0.00961538466323,0.005390835525461,0.005763688703004,1e-04,0.005571030584803,1e-04,0.014388489208633,0.005633802760722,0.005633802760722,1e-04,0.005361930241431,0.005698005811966,0.013986013986014,1e-04,1e-04)
x <- c(600,600,600,600,600,600,600,600,600,600,600,600,600,600,600,600,600,600,600,600,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,3500,744.47,744.47,744.47,744.47,744.47,744.47,744.47,630.42,630.42,630.42,630.42,630.42,630.42,630.42,630.42,630.42)
fit <- glm(y~x,family='Gamma'(link='log'))
visreg(fit, scale = "response")
的示例:
predict
答案 1 :(得分:1)
由于您选择在对数刻度上建模,但在原始刻度上绘图,因此此处不一致。提醒您,许多已发布的图都执行相同的操作。您需要在对数空间中绘制点或变换系数并将其明确传递给abline()。