我有一个时间序列数据,说机器读法如下(说)
df['machine_r'] = [1,2,1,5,3,4,5,1,2,3,4,5,7,8,1,2.....]
如何像下面那样更改数据框
If data in dataframe <= 25 percentile, value = 0.25,
if 25p < data <=50p value = 0.50,
if 50p<data <= 75p, value = 0.75,
if data>75p , value = 1
我尝试过
p25 = df['machine_r'].quantile(0.25) ## p25 is 25 percentile
p50 = df['machine_r'].quantile(0.5)
p75 = df['machine_r'].quantile(0.8)
p100 = df['machine_r'].quantile(1)
bins = [-100,p25,p50,p75,p100]
labels = [0.25, 0.5,0.75,1]
df['machine_r'] = pd.cut(df['copper'], bins=bins,labels=labels)
,但它返回0、0.25、0.5、0.75、1作为分类值,但我需要将它们作为浮点数进行进一步分析。怎么办?
答案 0 :(得分:1)
您可以按astype
将其投射为浮动:
branch
更好的是像提到的qcut
一样使用Sandeep Kadapa:
df['new'] = pd.cut(df['machine_r'], bins=bins,labels=labels).astype(float)