我有一个Spark + Kafka流媒体应用程序,可以在本地模式下正常运行,但是当我尝试在yarn + local / cluster模式下启动它时,会出现类似以下的错误
我经常看到的第一个错误是
WARN TaskSetManager: Lost task 1.1 in stage 3.0 (TID 9, ip-xxx-24-129-36.ec2.internal, executor 2): java.lang.NoClassDefFoundError: Could not initialize class TestStreaming$
at TestStreaming$$anonfun$main$1$$anonfun$apply$1.apply(TestStreaming.scala:60)
at TestStreaming$$anonfun$main$1$$anonfun$apply$1.apply(TestStreaming.scala:59)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28)
at org.apache.spark.rdd.RDD$$anonfun$foreach$1$$anonfun$apply$28.apply(RDD.scala:917)
at org.apache.spark.rdd.RDD$$anonfun$foreach$1$$anonfun$apply$28.apply(RDD.scala:917)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:322)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
下一个错误是
ERROR JobScheduler:运行作业流作业1541786030000 ms.0时出错
跟着
java.lang.NoClassDefFoundError:无法初始化类
Spark版本2.1.0 斯卡拉2.11 Kafka版本10
启动时,部分代码会将配置加载到main中。我在罐子运行后使用-conf传递此配置文件(请参见下文)。我不太确定,但也必须将此配置也传递给执行程序吗?
我使用以下命令启动流式应用程序。一个显示本地模式,另一个显示客户端模式。
runJar = myProgram.jar loggerPath = / path / to / log4j.properties
mainClass = TestStreaming
logger = -DPHDTKafkaConsumer.app.log4j = $ loggerPath
confFile = application.conf
-----------本地模式---------- SPARK_KAFKA_VERSION = 0.10 nohup spark2-submit --driver-java-options “ $ logger” --conf“ spark.executor.extraJavaOptions = $ logger” --class $ mainClass --master local [4] $ runJar -conf $ confFile&
-----------客户端模式---------- SPARK_KAFKA_VERSION = 0.10 nohup spark2-submit --master yarn --conf>“ spark.executor.extraJavaOptions = $ logger” --conf>“ spark.driver.extraJavaOptions = $ logger” --class $ mainClass $ runJar -conf> $ confFile&
这是我下面的代码。已与之抗争了一个多星期。
import Util.UtilFunctions
import UtilFunctions.config
import org.apache.spark.sql.SparkSession
import org.apache.spark.SparkConf
import org.apache.spark.streaming.Seconds
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.kafka010.ConsumerStrategies.Subscribe
import org.apache.spark.streaming.kafka010.KafkaUtils
import org.apache.spark.streaming.kafka010.LocationStrategies.PreferConsistent
import org.apache.log4j.Logger
object TestStreaming extends Serializable {
@transient lazy val logger: Logger = Logger.getLogger(getClass.getName)
def main(args: Array[String]) {
logger.info("Starting app")
UtilFunctions.loadConfig(args)
UtilFunctions.loadLogger()
val props: Map[String, String] = setKafkaProperties()
val topic = Set(config.getString("config.TOPIC_NAME"))
val conf = new SparkConf()
.setAppName(config.getString("config.SPARK_APP_NAME"))
.set("spark.streaming.backpressure.enabled", "true")
val spark = SparkSession.builder()
.config(conf)
.getOrCreate()
val ssc = new StreamingContext(spark.sparkContext, Seconds(10))
ssc.sparkContext.setLogLevel("INFO")
ssc.checkpoint(config.getString("config.SPARK_CHECKPOINT_NAME"))
val kafkaStream = KafkaUtils.createDirectStream[String, String](ssc, PreferConsistent, Subscribe[String, String](topic, props))
val distRecordsStream = kafkaStream.map(record => (record.key(), record.value()))
distRecordsStream.window(Seconds(10), Seconds(10))
distRecordsStream.foreachRDD(rdd => {
if(!rdd.isEmpty()) {
rdd.foreach(record => {
println(record._2) //value from kafka
})
}
})
ssc.start()
ssc.awaitTermination()
ssc.stop()
}
def setKafkaProperties(): Map[String, String] = {
val deserializer = "org.apache.kafka.common.serialization.StringDeserializer"
val zookeeper = config.getString("config.ZOOKEEPER")
val offsetReset = config.getString("config.OFFSET_RESET")
val brokers = config.getString("config.BROKERS")
val groupID = config.getString("config.GROUP_ID")
val autoCommit = config.getString("config.AUTO_COMMIT")
val maxPollRecords = config.getString("config.MAX_POLL_RECORDS")
val maxPollIntervalms = config.getString("config.MAX_POLL_INTERVAL_MS")
val props = Map(
"bootstrap.servers" -> brokers,
"zookeeper.connect" -> zookeeper,
"group.id" -> groupID,
"key.deserializer" -> deserializer,
"value.deserializer" -> deserializer,
"enable.auto.commit" -> autoCommit,
"auto.offset.reset" -> offsetReset,
"max.poll.records" -> maxPollRecords,
"max.poll.interval.ms" -> maxPollIntervalms)
props
}
}