使用适用于Python的Azure存储SDK将文件夹中的多个文件上传到Azure Blob存储

时间:2018-11-09 14:31:41

标签: python azure azure-storage azure-blob-storage

我在Windows机器上的本地文件夹中有一些图像。我想将所有图像上传到同一容器中的同一Blob。

我知道如何使用Azure Storage SDKs library(partykit) library(aVirtualTwins) data(sepsis) attach(sepsis) data <- cbind(y = survival, trt = as.factor(THERAPY), sepsis[,3:13]) formula <- as.formula(paste("y ~ trt", paste(names(sepsis[,3:13]), collapse = " + "), sep = " | ")) fit <- glmtree(formula, data, family = binomial) plot(fit) detach(sepsis) 上传单个文件,但是我看不到一次可以上传文件夹中所有图像的可能性。

但是,Azure Storage Explorer为此提供了功能,因此必须可以通过某种方式实现。

是否有提供此服务的功能,或者我是否必须遍历文件夹中的所有文件并为同一Blob多次运行BlockBlobService.create_blob_from_path()

2 个答案:

答案 0 :(得分:4)

没有直接的方法可以做到这一点。您可以通过Azure存储python SDK blockblobservice.pybaseblobservice.py浏览详细信息。

正如您提到的,您应该遍历它。示例代码如下:

from azure.storage.blob import BlockBlobService, PublicAccess
import os

def run_sample():
    block_blob_service = BlockBlobService(account_name='your_account', account_key='your_key')
    container_name ='t1s'

    local_path = "D:\\Test\\test"

    for files in os.listdir(local_path):
        block_blob_service.create_blob_from_path(container_name,files,os.path.join(local_path,files))


# Main method.
if __name__ == '__main__':
    run_sample()

本地文件: enter image description here

代码执行后,它们被上传到azure: enter image description here

答案 1 :(得分:0)

您可以通过探索多线程来获得更好的上传性能。这里有一些代码可以做到这一点:

from azure.storage.blob import BlobClient
from threading import Thread
import os


# Uploads a single blob. May be invoked in thread.
def upload_blob(container, file, index=0, result=None):
    if result is None:
        result = [None]

    try:
        # extract blob name from file path
        blob_name = ''.join(os.path.splitext(os.path.basename(file)))

        blob = BlobClient.from_connection_string(
            conn_str='CONNECTION STRING',
            container_name=container,
            blob_name=blob_name
        )

        with open(file, "rb") as data:
            blob.upload_blob(data, overwrite=True)

        print(f'Upload succeeded: {blob_name}')
        result[index] = True # example of returning result
    except Exception as e:
        print(e) # do something useful here
        result[index] = False # example of returning result


# container: string of container name. This example assumes the container exists.
# files: list of file paths.    
def upload_wrapper(container, files):
    # here, you can define a better threading/batching strategy than what is written
    # this code just creates a new thread for each file to be uploaded
    parallel_runs = len(files)
    threads = [None] * parallel_runs
    results = [None] * parallel_runs
    for i in range(parallel_runs):
        t = Thread(target=upload_blob, args=(container, files[i], i, results))
        threads[i] = t
        threads[i].start()

    for i in range(parallel_runs):  # wait for all threads to finish
        threads[i].join()

    # do something with results here

可能有更好的分块策略 - 这只是一个示例,用于说明在某些情况下,您可以通过使用线程来实现更高的 blob 上传性能。

以下是顺序循环方法与上述线程方法(482 个图像文件,总共 26 MB)之间的一些基准:

  • 顺序上传:89 秒
  • 线程上传:28 秒

我还要补充一点,您可以考虑通过 Python 调用 azcopy,因为此工具可能更适合您的特定需求。