Edittext删除textchangedlistener

时间:2018-11-09 04:22:58

标签: android android-edittext addtextchangedlistener

我一直在寻找有关如何删除文本更改侦听器的答案。

这是我当前的代码:

from PIL import Image
import numpy as np
import imutils
import cv2
# from panorama import Stitcher
import argparse
import imutils
import cv2

class Stitcher:
    def __init__(self):
        # determine if we are using OpenCV v3.X
        self.isv3 = imutils.is_cv3()

    def stitch(self, images, ratio=0.75, reprojThresh=4.0,
               showMatches=False):
        # unpack the images, then detect keypoints and extract
        # local invariant descriptors from them
        (imageB, imageA) = images
        (kpsA, featuresA) = self.detectAndDescribe(imageA)
        (kpsB, featuresB) = self.detectAndDescribe(imageB)

        # match features between the two images
        M = self.matchKeypoints(kpsA, kpsB,
                                featuresA, featuresB, ratio, reprojThresh)

        # if the match is None, then there aren't enough matched
        # keypoints to create a panorama
        if M is None:
            return None

        # otherwise, apply a perspective warp to stitch the images
        # together
        (matches, H, status) = M
        result = cv2.warpPerspective(imageA, H,
                                     (imageA.shape[1] + imageB.shape[1], imageA.shape[0]))
        result[0:imageB.shape[0], 0:imageB.shape[1]] = imageB

        # check to see if the keypoint matches should be visualized
        if showMatches:
            vis = self.drawMatches(imageA, imageB, kpsA, kpsB, matches,
                                   status)

            # return a tuple of the stitched image and the
            # visualization
            return (result, vis)

        # return the stitched image
        return result

    def detectAndDescribe(self, image):
        # convert the image to grayscale
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

        # check to see if we are using OpenCV 3.X
        if self.isv3:
            # detect and extract features from the image
            descriptor = cv2.xfeatures2d.SIFT_create()
            (kps, features) = descriptor.detectAndCompute(image, None)

        # otherwise, we are using OpenCV 2.4.X
        else:
            # detect keypoints in the image
            detector = cv2.FeatureDetector_create("SIFT")
            kps = detector.detect(gray)

            # extract features from the image
            extractor = cv2.DescriptorExtractor_create("SIFT")
            (kps, features) = extractor.compute(gray, kps)

        # convert the keypoints from KeyPoint objects to NumPy
        # arrays
        kps = np.float32([kp.pt for kp in kps])

        # return a tuple of keypoints and features
        return (kps, features)

    def matchKeypoints(self, kpsA, kpsB, featuresA, featuresB,
                       ratio, reprojThresh):
        # compute the raw matches and initialize the list of actual
        # matches
        matcher = cv2.DescriptorMatcher_create("BruteForce")
        rawMatches = matcher.knnMatch(featuresA, featuresB, 2)
        matches = []

        # loop over the raw matches
        for m in rawMatches:
            # ensure the distance is within a certain ratio of each
            # other (i.e. Lowe's ratio test)
            if len(m) == 2 and m[0].distance < m[1].distance * ratio:
                matches.append((m[0].trainIdx, m[0].queryIdx))

        # computing a homography requires at least 4 matches
        if len(matches) > 4:
            # construct the two sets of points
            ptsA = np.float32([kpsA[i] for (_, i) in matches])
            ptsB = np.float32([kpsB[i] for (i, _) in matches])

            # compute the homography between the two sets of points
            (H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC,
                                             reprojThresh)

            # return the matches along with the homograpy matrix
            # and status of each matched point
            return (matches, H, status)

        # otherwise, no homograpy could be computed
        return None

    def drawMatches(self, imageA, imageB, kpsA, kpsB, matches, status):
        # initialize the output visualization image
        (hA, wA) = imageA.shape[:2]
        (hB, wB) = imageB.shape[:2]
        vis = np.zeros((max(hA, hB), wA + wB, 3), dtype="uint8")
        vis[0:hA, 0:wA] = imageA
        vis[0:hB, wA:] = imageB

        # loop over the matches
        for ((trainIdx, queryIdx), s) in zip(matches, status):
            # only process the match if the keypoint was successfully
            # matched
            if s == 1:
                # draw the match
                ptA = (int(kpsA[queryIdx][0]), int(kpsA[queryIdx][1]))
                ptB = (int(kpsB[trainIdx][0]) + wA, int(kpsB[trainIdx][1]))
                cv2.line(vis, ptA, ptB, (0, 255, 0), 1)

        # return the visualization
        return vis


if __name__ == '__main__':
    images_folder = sys.argv[1]
    images = ["0.png", "1.png", "2.png", "3.png"]

    imageA = cv2.imread(images_folder+images[0])
    imageB = cv2.imread(images_folder+images[1])

    # stitch the images together to create a panorama
    stitcher = Stitcher()
    (result, vis) = stitcher.stitch([imageA, imageB], showMatches=True)

    count = 0
    imgRGB=cv2.cvtColor(result, cv2.COLOR_BGR2RGB)
    img = Image.fromarray(imgRGB)
    current_stiched_image = images_folder + "lol10{}.png".format(count)
    img.save(current_stiched_image)

    for image in images[2:]:
        count+=1
        print("image: {}".format(image))
        print("count: {}".format(count))
        print("current_stiched_image: {}".format(current_stiched_image))
        imageA1 = cv2.imread(current_stiched_image)
        imageB1 = cv2.imread(images_folder + image)
        (result, vis) = stitcher.stitch([imageA1, imageB1], showMatches=True)
        imgRGB=cv2.cvtColor(result, cv2.COLOR_BGR2RGB)
        img = Image.fromarray(imgRGB)
        current_stiched_image = images_folder + "lol10{}.png".format(count)
        print("new current_stiched_image: {}".format(current_stiched_image))
        img.save(current_stiched_image)

当我的布尔enableFormatting为False时,textchangelistener仍然存在。

如果您想更清楚地解释我的代码,可以提供NumberTextwatcherForThousands类。

1 个答案:

答案 0 :(得分:2)

您需要保留对侦听器的引用,当您尝试删除旧的侦听器时,现在正在创建一个新的侦听器。 像这样:

/* get this into @sql */
select 'Y' as col1;

declare @SQL as nvarchar(max)

set @SQL = N'select ''Y'' as col1;'

select @SQL;

+---------------------+
|        @SQL         |
+---------------------+
| select 'Y' as col1; |
+---------------------+