我有以下DataFrame,其中一列是对象(列表类型单元格):
df=pd.DataFrame({'A':[1,2],'B':[[1,2],[1,2]]})
df
Out[458]:
A B
0 1 [1, 2]
1 2 [1, 2]
我的预期输出是:
A B
0 1 1
1 1 2
3 2 1
4 2 2
我该怎么做?
相关问题
很好的问题和答案,但只能处理带有列表的一列(在我的回答中,self-def函数可用于多列,而且公认的答案是使用最耗时的apply
,不建议这样做,查看更多信息pandas: When cell contents are lists, create a row for each element in the list)
答案 0 :(得分:65)
作为同时拥有R
和python
的用户,我已经多次看到这种类型的问题。
在R中,它们具有名为tidyr
的软件包unnest
的内置函数。但是在Python
(pandas
)中,没有针对此类问题的内置函数。
我知道object
列type
总是使数据难以使用pandas
'函数进行转换。当我收到这样的数据时,想到的第一件事就是“弄平”或取消嵌套列。
方法1
apply + pd.Series
(易于理解,但不建议在性能方面进行推荐。)
df.set_index('A').B.apply(pd.Series).stack().reset_index(level=0).rename(columns={0:'B'})
Out[463]:
A B
0 1 1
1 1 2
0 2 1
1 2 2
方法2 与repeat
构造函数一起使用DataFrame
,重新创建数据框(性能好,多列不好)
df=pd.DataFrame({'A':df.A.repeat(df.B.str.len()),'B':np.concatenate(df.B.values)})
df
Out[465]:
A B
0 1 1
0 1 2
1 2 1
1 2 2
方法2.1 例如,除了A,我们还有A.1 ..... A.n。如果我们仍然使用上面的方法(方法2 ),则很难一一重新创建列。
解决方案:join
或merge
与“ {nest”单列之后的index
s=pd.DataFrame({'B':np.concatenate(df.B.values)},index=df.index.repeat(df.B.str.len()))
s.join(df.drop('B',1),how='left')
Out[477]:
B A
0 1 1
0 2 1
1 1 2
1 2 2
如果您需要与以前完全相同的列顺序,请在末尾添加reindex
。
s.join(df.drop('B',1),how='left').reindex(columns=df.columns)
方法3 重新创建list
pd.DataFrame([[x] + [z] for x, y in df.values for z in y],columns=df.columns)
Out[488]:
A B
0 1 1
1 1 2
2 2 1
3 2 2
如果两列以上
s=pd.DataFrame([[x] + [z] for x, y in zip(df.index,df.B) for z in y])
s.merge(df,left_on=0,right_index=True)
Out[491]:
0 1 A B
0 0 1 1 [1, 2]
1 0 2 1 [1, 2]
2 1 1 2 [1, 2]
3 1 2 2 [1, 2]
方法4 使用reindex
或loc
df.reindex(df.index.repeat(df.B.str.len())).assign(B=np.concatenate(df.B.values))
Out[554]:
A B
0 1 1
0 1 2
1 2 1
1 2 2
#df.loc[df.index.repeat(df.B.str.len())].assign(B=np.concatenate(df.B.values))
方法5 (当列表仅包含唯一值时):
df=pd.DataFrame({'A':[1,2],'B':[[1,2],[3,4]]})
from collections import ChainMap
d = dict(ChainMap(*map(dict.fromkeys, df['B'], df['A'])))
pd.DataFrame(list(d.items()),columns=df.columns[::-1])
Out[574]:
B A
0 1 1
1 2 1
2 3 2
3 4 2
方法6 使用numpy
获得高性能:
newvalues=np.dstack((np.repeat(df.A.values,list(map(len,df.B.values))),np.concatenate(df.B.values)))
pd.DataFrame(data=newvalues[0],columns=df.columns)
A B
0 1 1
1 1 2
2 2 1
3 2 2
方法7 :使用基本函数itertools
cycle
和chain
:纯python解决方案很有趣
from itertools import cycle,chain
l=df.values.tolist()
l1=[list(zip([x[0]], cycle(x[1])) if len([x[0]]) > len(x[1]) else list(zip(cycle([x[0]]), x[1]))) for x in l]
pd.DataFrame(list(chain.from_iterable(l1)),columns=df.columns)
A B
0 1 1
1 1 2
2 2 1
3 2 2
特殊情况(两列类型的对象)
df=pd.DataFrame({'A':[1,2],'B':[[1,2],[3,4]],'C':[[1,2],[3,4]]})
df
Out[592]:
A B C
0 1 [1, 2] [1, 2]
1 2 [3, 4] [3, 4]
自定义功能
def unnesting(df, explode):
idx = df.index.repeat(df[explode[0]].str.len())
df1 = pd.concat([
pd.DataFrame({x: np.concatenate(df[x].values)}) for x in explode], axis=1)
df1.index = idx
return df1.join(df.drop(explode, 1), how='left')
unnesting(df,['B','C'])
Out[609]:
B C A
0 1 1 1
0 2 2 1
1 3 3 2
1 4 4 2
摘要:
我正在使用pandas
和python
函数来解决此类问题。如果您担心上述解决方案的速度,请检查user3483203的答案,因为他正在使用numpy
并且大多数时候numpy
更快。如果您的速度至关重要,我建议使用Cpython
和numba
。
答案 1 :(得分:28)
选项1
如果另一列中的所有子列表的长度均相同,则Maybe
可能是一种有效的选择:
Bool
numpy
选项2
如果子列表的长度不同,则需要执行其他步骤:
vals = np.array(df.B.values.tolist())
a = np.repeat(df.A, vals.shape[1])
pd.DataFrame(np.column_stack((a, vals.ravel())), columns=df.columns)
A B
0 1 1
1 1 2
2 2 1
3 2 2
选项3
我对此进行了推广,以使其平坦化vals = df.B.values.tolist()
rs = [len(r) for r in vals]
a = np.repeat(df.A, rs)
pd.DataFrame(np.column_stack((a, np.concatenate(vals))), columns=df.columns)
列并平铺 A B
0 1 1
1 1 2
2 2 1
3 2 2
列,稍后我将致力于使其更加有效:
N
M
df = pd.DataFrame({'A': [1,2,3], 'B': [[1,2], [1,2,3], [1]],
'C': [[1,2,3], [1,2], [1,2]], 'D': ['A', 'B', 'C']})
A B C D
0 1 [1, 2] [1, 2, 3] A
1 2 [1, 2, 3] [1, 2] B
2 3 [1] [1, 2] C
功能
def unnest(df, tile, explode):
vals = df[explode].sum(1)
rs = [len(r) for r in vals]
a = np.repeat(df[tile].values, rs, axis=0)
b = np.concatenate(vals.values)
d = np.column_stack((a, b))
return pd.DataFrame(d, columns = tile + ['_'.join(explode)])
unnest(df, ['A', 'D'], ['B', 'C'])
时间
A D B_C
0 1 A 1
1 1 A 2
2 1 A 1
3 1 A 2
4 1 A 3
5 2 B 1
6 2 B 2
7 2 B 3
8 2 B 1
9 2 B 2
10 3 C 1
11 3 C 1
12 3 C 2
性能
答案 2 :(得分:9)
一种替代方法是将meshgrid recipe应用于列中的行以使其嵌套:
import numpy as np
import pandas as pd
def unnest(frame, explode):
def mesh(values):
return np.array(np.meshgrid(*values)).T.reshape(-1, len(values))
data = np.vstack(mesh(row) for row in frame[explode].values)
return pd.DataFrame(data=data, columns=explode)
df = pd.DataFrame({'A': [1, 2], 'B': [[1, 2], [1, 2]]})
print(unnest(df, ['A', 'B'])) # base
print()
df = pd.DataFrame({'A': [1, 2], 'B': [[1, 2], [3, 4]], 'C': [[1, 2], [3, 4]]})
print(unnest(df, ['A', 'B', 'C'])) # multiple columns
print()
df = pd.DataFrame({'A': [1, 2, 3], 'B': [[1, 2], [1, 2, 3], [1]],
'C': [[1, 2, 3], [1, 2], [1, 2]], 'D': ['A', 'B', 'C']})
print(unnest(df, ['A', 'B'])) # uneven length lists
print()
print(unnest(df, ['D', 'B'])) # different types
print()
输出
A B
0 1 1
1 1 2
2 2 1
3 2 2
A B C
0 1 1 1
1 1 2 1
2 1 1 2
3 1 2 2
4 2 3 3
5 2 4 3
6 2 3 4
7 2 4 4
A B
0 1 1
1 1 2
2 2 1
3 2 2
4 2 3
5 3 1
D B
0 A 1
1 A 2
2 B 1
3 B 2
4 B 3
5 C 1
答案 3 :(得分:4)
假设其中有多列对象的长度不同
df = pd.DataFrame({
'A': [1, 2],
'B': [[1, 2], [3, 4]],
'C': [[1, 2], [3, 4, 5]]
})
df
A B C
0 1 [1, 2] [1, 2]
1 2 [3, 4] [3, 4, 5]
当长度相同时,我们很容易假设变化的元素是重合的,应该一起“压缩”。
A B C
0 1 [1, 2] [1, 2] # Typical to assume these should be zipped [(1, 1), (2, 2)]
1 2 [3, 4] [3, 4, 5]
但是,当我们看到不同长度的对象时,如果我们“压缩”,假设就会受到挑战,如果是,那么如何处理其中一个对象中的多余对象。 OR ,也许我们想要所有对象的乘积。这会很快变大,但可能正是想要的。
A B C
0 1 [1, 2] [1, 2]
1 2 [3, 4] [3, 4, 5] # is this [(3, 3), (4, 4), (None, 5)]?
OR
A B C
0 1 [1, 2] [1, 2]
1 2 [3, 4] [3, 4, 5] # is this [(3, 3), (3, 4), (3, 5), (4, 3), (4, 4), (4, 5)]
此函数根据参数适当地处理zip
或product
,并根据最长对象zip
的长度假定为zip_longest
from itertools import zip_longest, product
def xplode(df, explode, zipped=True):
method = zip_longest if zipped else product
rest = {*df} - {*explode}
zipped = zip(zip(*map(df.get, rest)), zip(*map(df.get, explode)))
tups = [tup + exploded
for tup, pre in zipped
for exploded in method(*pre)]
return pd.DataFrame(tups, columns=[*rest, *explode])[[*df]]
xplode(df, ['B', 'C'])
A B C
0 1 1.0 1
1 1 2.0 2
2 2 3.0 3
3 2 4.0 4
4 2 NaN 5
xplode(df, ['B', 'C'], zipped=False)
A B C
0 1 1 1
1 1 1 2
2 1 2 1
3 1 2 2
4 2 3 3
5 2 3 4
6 2 3 5
7 2 4 3
8 2 4 4
9 2 4 5
稍微修改一下示例
df = pd.DataFrame({
'A': [1, 2],
'B': [[1, 2], [3, 4]],
'C': 'C',
'D': [[1, 2], [3, 4, 5]],
'E': [('X', 'Y', 'Z'), ('W',)]
})
df
A B C D E
0 1 [1, 2] C [1, 2] (X, Y, Z)
1 2 [3, 4] C [3, 4, 5] (W,)
xplode(df, ['B', 'D', 'E'])
A B C D E
0 1 1.0 C 1.0 X
1 1 2.0 C 2.0 Y
2 1 NaN C NaN Z
3 2 3.0 C 3.0 W
4 2 4.0 C 4.0 None
5 2 NaN C 5.0 None
xplode(df, ['B', 'D', 'E'], zipped=False)
A B C D E
0 1 1 C 1 X
1 1 1 C 1 Y
2 1 1 C 1 Z
3 1 1 C 2 X
4 1 1 C 2 Y
5 1 1 C 2 Z
6 1 2 C 1 X
7 1 2 C 1 Y
8 1 2 C 1 Z
9 1 2 C 2 X
10 1 2 C 2 Y
11 1 2 C 2 Z
12 2 3 C 3 W
13 2 3 C 4 W
14 2 3 C 5 W
15 2 4 C 3 W
16 2 4 C 4 W
17 2 4 C 5 W
答案 4 :(得分:2)
我的5美分:
df[['B', 'B2']] = pd.DataFrame(df['B'].values.tolist())
df[['A', 'B']].append(df[['A', 'B2']].rename(columns={'B2': 'B'}),
ignore_index=True)
和另外5
df[['B1', 'B2']] = pd.DataFrame([*df['B']]) # if values.tolist() is too boring
(pd.wide_to_long(df.drop('B', 1), 'B', 'A', '')
.reset_index(level=1, drop=True)
.reset_index())
两者都相同
A B
0 1 1
1 2 1
2 1 2
3 2 2
答案 5 :(得分:2)
因为通常子列表的长度是不同的,所以连接/合并的计算量要大得多。我针对不同长度的子列表和更普通的列重新测试了该方法。
MultiIndex也是一种更容易编写的方式,并且具有与numpy方式几乎相同的性能。
令人惊讶的是,在我的实现理解方法中,它具有最佳的性能。
def stack(df):
return df.set_index(['A', 'C']).B.apply(pd.Series).stack()
def comprehension(df):
return pd.DataFrame([x + [z] for x, y in zip(df[['A', 'C']].values.tolist(), df.B) for z in y])
def multiindex(df):
return pd.DataFrame(np.concatenate(df.B.values), index=df.set_index(['A', 'C']).index.repeat(df.B.str.len()))
def array(df):
return pd.DataFrame(
np.column_stack((
np.repeat(df[['A', 'C']].values, df.B.str.len(), axis=0),
np.concatenate(df.B.values)
))
)
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from timeit import timeit
res = pd.DataFrame(
index=[
'stack',
'comprehension',
'multiindex',
'array',
],
columns=[1000, 2000, 5000, 10000, 20000, 50000],
dtype=float
)
for f in res.index:
for c in res.columns:
df = pd.DataFrame({'A': list('abc'), 'C': list('def'), 'B': [['g', 'h', 'i'], ['j', 'k'], ['l']]})
df = pd.concat([df] * c)
stmt = '{}(df)'.format(f)
setp = 'from __main__ import df, {}'.format(f)
res.at[f, c] = timeit(stmt, setp, number=20)
ax = res.div(res.min()).T.plot(loglog=True)
ax.set_xlabel("N")
ax.set_ylabel("time (relative)")
答案 6 :(得分:1)
不建议使用某种方法(至少在这种情况下有效):
df=pd.concat([df]*2).sort_index()
it=iter(df['B'].tolist()[0]+df['B'].tolist()[0])
df['B']=df['B'].apply(lambda x:next(it))
concat
+ sort_index
+ iter
+ apply
+ next
。
现在:
print(df)
是:
A B
0 1 1
0 1 2
1 2 1
1 2 2
如果在乎索引:
df=df.reset_index(drop=True)
现在:
print(df)
是:
A B
0 1 1
1 1 2
2 2 1
3 2 2
答案 7 :(得分:1)
df=pd.DataFrame({'A':[1,2],'B':[[1,2],[1,2]]})
pd.concat([df['A'], pd.DataFrame(df['B'].values.tolist())], axis = 1)\
.melt(id_vars = 'A', value_name = 'B')\
.dropna()\
.drop('variable', axis = 1)
A B
0 1 1
1 2 1
2 1 2
3 2 2
我对这种方法有何看法?还是同时进行合并和合并都被认为太“昂贵”?
答案 8 :(得分:1)
当您有不止一列要爆炸时,我还有另一种解决此问题的好方法。
df=pd.DataFrame({'A':[1,2],'B':[[1,2],[1,2]], 'C':[[1,2,3],[1,2,3]]})
print(df)
A B C
0 1 [1, 2] [1, 2, 3]
1 2 [1, 2] [1, 2, 3]
我想爆炸B和C列。首先爆炸B,然后爆炸C。然后我将B和C从原始df放下。之后,我将在3个dfs上进行索引连接。
explode_b = df.explode('B')['B']
explode_c = df.explode('C')['C']
df = df.drop(['B', 'C'], axis=1)
df = df.join([explode_b, explode_c])
答案 9 :(得分:0)
df=pd.DataFrame({'A':[1,2],'B':[[1,2],[1,2]]})
out = pd.concat([df.loc[:,'A'],(df.B.apply(pd.Series))], axis=1, sort=False)
out = out.set_index('A').stack().droplevel(level=1).reset_index().rename(columns={0:"B"})
A B
0 1 1
1 1 2
2 2 1
3 2 2
答案 10 :(得分:0)
# Here's the answer to the related question in:
# https://stackoverflow.com/q/56708671/11426125
# initial dataframe
df12=pd.DataFrame({'Date':['2007-12-03','2008-09-07'],'names':
[['Peter','Alex'],['Donald','Stan']]})
# convert dataframe to array for indexing list values (names)
a = np.array(df12.values)
# create a new, dataframe with dimensions for unnested
b = np.ndarray(shape = (4,2))
df2 = pd.DataFrame(b, columns = ["Date", "names"], dtype = str)
# implement loops to assign date/name values as required
i = range(len(a[0]))
j = range(len(a[0]))
for x in i:
for y in j:
df2.iat[2*x+y, 0] = a[x][0]
df2.iat[2*x+y, 1] = a[x][1][y]
# set Date column as Index
df2.Date=pd.to_datetime(df2.Date)
df2.index=df2.Date
df2.drop('Date',axis=1,inplace =True)
答案 11 :(得分:0)
我对此问题进行了概括,以适用于更多列。
我的解决方案的摘要:
In[74]: df
Out[74]:
A B C columnD
0 A1 B1 [C1.1, C1.2] D1
1 A2 B2 [C2.1, C2.2] [D2.1, D2.2, D2.3]
2 A3 B3 C3 [D3.1, D3.2]
In[75]: dfListExplode(df,['C','columnD'])
Out[75]:
A B C columnD
0 A1 B1 C1.1 D1
1 A1 B1 C1.2 D1
2 A2 B2 C2.1 D2.1
3 A2 B2 C2.1 D2.2
4 A2 B2 C2.1 D2.3
5 A2 B2 C2.2 D2.1
6 A2 B2 C2.2 D2.2
7 A2 B2 C2.2 D2.3
8 A3 B3 C3 D3.1
9 A3 B3 C3 D3.2
完整示例:
实际爆炸发生在3行中。其余是化妆品(多列爆炸,字符串处理而不是爆炸列中的列表,...)。
import pandas as pd
import numpy as np
df=pd.DataFrame( {'A': ['A1','A2','A3'],
'B': ['B1','B2','B3'],
'C': [ ['C1.1','C1.2'],['C2.1','C2.2'],'C3'],
'columnD': [ 'D1',['D2.1','D2.2', 'D2.3'],['D3.1','D3.2']],
})
print('df',df, sep='\n')
def dfListExplode(df, explodeKeys):
if not isinstance(explodeKeys, list):
explodeKeys=[explodeKeys]
# recursive handling of explodeKeys
if len(explodeKeys)==0:
return df
elif len(explodeKeys)==1:
explodeKey=explodeKeys[0]
else:
return dfListExplode( dfListExplode(df, explodeKeys[:1]), explodeKeys[1:])
# perform explosion/unnesting for key: explodeKey
dfPrep=df[explodeKey].apply(lambda x: x if isinstance(x,list) else [x]) #casts all elements to a list
dfIndExpl=pd.DataFrame([[x] + [z] for x, y in zip(dfPrep.index,dfPrep.values) for z in y ], columns=['explodedIndex',explodeKey])
dfMerged=dfIndExpl.merge(df.drop(explodeKey, axis=1), left_on='explodedIndex', right_index=True)
dfReind=dfMerged.reindex(columns=list(df))
return dfReind
dfExpl=dfListExplode(df,['C','columnD'])
print('dfExpl',dfExpl, sep='\n')
答案 12 :(得分:0)
simplified significantly in pandas 0.25爆炸了类似列表的列,并增加了height
方法:
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport"
content="width=device-width, user-scalable=no, initial-scale=1.0, maximum-scale=1.0, minimum-scale=1.0">
<meta http-equiv="X-UA-Compatible" content="ie=edge">
<title>Document</title>
<style>
/* -- rest css first -- */
*{
padding: 0;
margin: 0;
}
h2{
margin: 5px auto;
text-align: center;
background-color: rgba(89, 89, 89, 0.62);
font-family: Tahoma;
}
.box1{
width: fit-content;
height: 200px;
/*this is for text to be center of the box*/
line-height: 200px;
text-align: center;
/*----------------------------------------*/
background-color: #5548ff;
margin:10px auto;
color: #fff;
font-size: 25px;
font-family: Verdana;
padding: 5px;
}
.box2{
width: fit-content;
height: 300px;
/*this is for text to be center of the box*/
line-height: 300px;
text-align: center;
/*----------------------------------------*/
background-color: rgba(255, 46, 81, 0.76);
margin:10px auto;
color: #fff;
font-size: 25px;
font-family: Verdana;
padding: 5px;
}
</style>
</head>
<body>
<h2>in these boxs height=line-hight for text to be center of the box</h2>
<div class="box1">
this text is center of the box
</div>
<div class="box2">
this text is center of the box
</div>
</body>
</html>
出局:
public loadSevirtychart(data): any {
const that = this;
that.chartOptions2 = {
chart: {
type: "pyramid",
},
title: {
text: "",
},
plotOptions: {
series: {
dataLabels: {
enabled: true,
format: "({point.x:,.0f})",
allowOverlap: false,
connectorPadding: 0,
distance: 10,
softConnector: true,
x: 0,
connectorShape: "fixedOffset",
crookDistance: "70%"
},
showInLegend: true,
cursor: "pointer",
point: {
events: {
click(event) {
that.drilldownseveritychart(this.id, this.name);
},
},
},
},
},
tooltip: {
formatter() {
const val = this.point.x;
return "<b>" + this.point.name + "</b>: " + val + "";
},
},
credits: {
enabled: false,
},
legend: {
layout: "horizontal",
verticalAlign: "bottom",
align: "center",
itemWidth: 85,
symbolWidth: 8,
symbolHight: 6,
floating: false,
borderWidth: 0,
backgroundColor: "#FFFFFF",
shadow: false,
itemStyle: {
font: "8pt Trebuchet MS, Verdana, sans-serif",
color: "#A0A0A0",
},
},
series: [{
name: "Count",
data,
}],
};
}
答案 13 :(得分:0)
在我的案例中,有超过一列要爆炸,并且需要取消嵌套的数组具有可变的长度。
我最终两次使用了新的0.25 explode
大熊猫函数,然后删除了生成的重复项,就可以了!
df = df.explode('A')
df = df.explode('B')
df = df.drop_duplicates()
答案 14 :(得分:0)
以下是基于@BEN_YO的答案的用于水平爆炸的简单函数。
import typing
import pandas as pd
def horizontal_explode(df: pd.DataFrame, col_name: str, new_columns: typing.Union[list, None]=None) -> pd.DataFrame:
t = pd.DataFrame(df[col_name].tolist(), columns=new_columns, index=df.index)
return pd.concat([df, t], axis=1)
运行示例:
items = [
["1", ["a", "b", "c"]],
["2", ["d", "e", "f"]]
]
df = pd.DataFrame(items, columns = ["col1", "col2"])
print(df)
t = horizontal_explode(df=df, col_name="col2")
del t["col2"]
print(t)
t = horizontal_explode(df=df, col_name="col2", new_columns=["new_col1", "new_col2", "new_col3"])
del t["col2"]
print(t)
这是相关的输出:
col1 col2
0 1 [a, b, c]
1 2 [d, e, f]
col1 0 1 2
0 1 a b c
1 2 d e f
col1 new_col1 new_col2 new_col3
0 1 a b c
1 2 d e f
答案 15 :(得分:0)
demo = {'set1':{'t1':[1,2,3],'t2':[4,5,6],'t3':[7,8,9]}, 'set2':{'t1':[1,2,3],'t2':[4,5,6],'t3':[7,8,9]}, 'set3': {'t1':[1,2,3],'t2':[4,5,6],'t3':[7,8,9]}}
df = pd.DataFrame.from_dict(demo, orient='index')
print(df.head())
my_list=[]
df2=pd.DataFrame(columns=['set','t1','t2','t3'])
for key,item in df.iterrows():
t1=item.t1
t2=item.t2
t3=item.t3
mat1=np.matrix([t1,t2,t3])
row1=[key,mat1[0,0],mat1[0,1],mat1[0,2]]
df2.loc[len(df2)]=row1
row2=[key,mat1[1,0],mat1[1,1],mat1[1,2]]
df2.loc[len(df2)]=row2
row3=[key,mat1[2,0],mat1[2,1],mat1[2,2]]
df2.loc[len(df2)]=row3
print(df2)
set t1 t2 t3
0 set1 1 2 3
1 set1 4 5 6
2 set1 7 8 9
3 set2 1 2 3
4 set2 4 5 6
5 set2 7 8 9
6 set3 1 2 3
7 set3 4 5 6
8 set3 7 8 9