我正在使用Keras进行手写数字识别,我有两个文件: predict.py 和 train.py 。
train.py 训练模型(如果尚未训练)并将其保存到目录中,否则只会从其保存到的目录中加载训练后的模型并打印{ {1}}和Test Loss
。
Test Accuracy
这里是输出(假设模型是较早训练的,这次将只加载模型):
另一方面,('测试损失',1.741784990310669)
(“测试准确度”,0.414)
predict.py 会预测一个手写数字:
def getData():
(X_train, y_train), (X_test, y_test) = mnist.load_data()
y_train = to_categorical(y_train, num_classes=10)
y_test = to_categorical(y_test, num_classes=10)
X_train = X_train.reshape(X_train.shape[0], 784)
X_test = X_test.reshape(X_test.shape[0], 784)
# normalizing the data to help with the training
X_train /= 255
X_test /= 255
return X_train, y_train, X_test, y_test
def trainModel(X_train, y_train, X_test, y_test):
# training parameters
batch_size = 1
epochs = 10
# create model and add layers
model = Sequential()
model.add(Dense(64, activation='relu', input_shape=(784,)))
model.add(Dense(10, activation = 'softmax'))
# compiling the sequential model
model.compile(loss='categorical_crossentropy', metrics=['accuracy'], optimizer='adam')
# training the model and saving metrics in history
history = model.fit(X_train, y_train,
batch_size=batch_size, epochs=epochs,
verbose=2,
validation_data=(X_test, y_test))
loss_and_metrics = model.evaluate(X_test, y_test, verbose=2)
print("Test Loss", loss_and_metrics[0])
print("Test Accuracy", loss_and_metrics[1])
# Save model structure and weights
model_json = model.to_json()
with open('model.json', 'w') as json_file:
json_file.write(model_json)
model.save_weights('mnist_model.h5')
return model
def loadModel():
json_file = open('model.json', 'r')
model_json = json_file.read()
json_file.close()
model = model_from_json(model_json)
model.load_weights("mnist_model.h5")
return model
X_train, y_train, X_test, y_test = getData()
if(not os.path.exists('mnist_model.h5')):
model = trainModel(X_train, y_train, X_test, y_test)
print('trained model')
print(model.summary())
else:
model = loadModel()
print('loaded model')
print(model.summary())
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
loss_and_metrics = model.evaluate(X_test, y_test, verbose=2)
print("Test Loss", loss_and_metrics[0])
print("Test Accuracy", loss_and_metrics[1])
在这种情况下,令我惊讶的是,得到了以下结果:
(“测试损失”,1.8380377866744995)
(“测试准确度”,0.8856)
在第二个文件中,我得到的def loadModel():
json_file = open('model.json', 'r')
model_json = json_file.read()
json_file.close()
model = model_from_json(model_json)
model.load_weights("mnist_model.h5")
return model
model = loadModel()
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
print(model.summary())
(X_train, y_train), (X_test, y_test) = mnist.load_data()
y_test = to_categorical(y_test, num_classes=10)
X_test = X_test.reshape(X_test.shape[0], 28*28)
loss_and_metrics = model.evaluate(X_test, y_test, verbose=2)
print("Test Loss", loss_and_metrics[0])
print("Test Accuracy", loss_and_metrics[1])
为0.88(是我以前获得的两倍以上)。
此外,两个文件中的Test Accuracy
都相同:
model.summery()
我无法弄清楚这种现象背后的原因。正常吗还是我错过了什么?
答案 0 :(得分:0)
差异的原因是,您一次用规范化数据(即除以255)调用evaluate()
方法,而另一次(即在“ predict.py”文件中)则用un调用它。 -标准化数据。在推断时间(即测试时间)中,您应始终使用与训练数据相同的预处理步骤。
此外,首先将数据转换为浮点数,然后将其除以255(否则,使用/
,在Python 2.x和Python 3.x中会进行真正的除法,运行时会出错) X_train /= 255
和X_test /= 255
):
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255.
X_test /= 255.