在我的Excel工作表“ XLSX”中,我有许多列。
首先,我搜索列标题“ Anwendung”和“ Profil-BenutzerId”。之后,我要将“ Anwendung”中的值为“ S6”的“ Profil-BenutzerId”中的所有字段复制到新的Excel工作表“ Rollen_Para”中。
我的代码正在复制满足这些条件的第一个结果,但我想复制整个列表。
Sheets("XLSX").Select
Dim h As Long
Dim i As Long
Dim j As Long
For h = 1 To 39
For i = 1 To 39
If Cells(19, h).Text = "Anwendung" And Cells(19, i).Text = "Profil-BenutzerId" Then
For j = 20 To 1048576
If Cells(j, h) = "S6" Then
Cells(j, i).Select
Selection.Copy
Sheets("Rollen_Para").Select
Cells(j - 18, 2).Select
ActiveSheet.Paste
Application.CutCopyMode = False
Selection.Borders(xlDiagonalDown).LineStyle = xlNone
Selection.Borders(xlDiagonalUp).LineStyle = xlNone
Selection.Borders(xlEdgeLeft).LineStyle = xlNone
Selection.Borders(xlEdgeTop).LineStyle = xlNone
Selection.Borders(xlEdgeBottom).LineStyle = xlNone
Selection.Borders(xlEdgeRight).LineStyle = xlNone
Selection.Borders(xlInsideVertical).LineStyle = xlNone
Selection.Borders(xlInsideHorizontal).LineStyle = xlNone
Selection.Borders(xlDiagonalDown).LineStyle = xlNone
Selection.Borders(xlDiagonalUp).LineStyle = xlNone
With Selection.Borders(xlEdgeLeft)
.LineStyle = xlContinuous
.ColorIndex = 0
.TintAndShade = 0
.Weight = xlThin
End With
Selection.Borders(xlEdgeTop).LineStyle = xlNone
Selection.Borders(xlEdgeBottom).LineStyle = xlNone
Selection.Borders(xlEdgeRight).LineStyle = xlNone
Selection.Borders(xlInsideVertical).LineStyle = xlNone
Selection.Borders(xlInsideHorizontal).LineStyle = xlNone
With Selection.Interior
.Pattern = xlSolid
.PatternColorIndex = xlAutomatic
.ThemeColor = xlThemeColorDark1
.TintAndShade = -0.149998474074526
.PatternTintAndShade = 0
End With
End If
Next
End If
Next
Next
End Sub
答案 0 :(得分:0)
您可以试试吗?您可以使用“查找”来避免大多数此类循环。我希望我有正确的方法。我已经忽略了与您的问题无关的边界,以后可以轻松添加。
from sklearn.kernel_approximation import Nystroem
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
K_train = anova_kernel(X_train)
clf = Pipeline([
('nys', Nystroem(kernel='precomputed', n_components=100)),
('lr', LogisticRegression())])
clf.fit(K_train, y_train)
K_test = anova_kernel(X_test, X_train)
preds = clf.predict(K_test)