我有一个深层嵌套的JSON,我正尝试使用json_normalize将其转换为Pandas Dataframe。
我正在使用的generic sample JSON数据看起来像这样(我在文章底部添加了我想做的事情的上下文):
{
"per_page": 2,
"total": 1,
"data": [{
"total_time": 0,
"collection_mode": "default",
"href": "https://api.surveymonkey.com/v3/responses/5007154325",
"custom_variables": {
"custvar_1": "one",
"custvar_2": "two"
},
"custom_value": "custom identifier for the response",
"edit_url": "https://www.surveymonkey.com/r/",
"analyze_url": "https://www.surveymonkey.com/analyze/browse/",
"ip_address": "",
"pages": [
{
"id": "103332310",
"questions": [{
"answers": [{
"choice_id": "3057839051"
}
],
"id": "319352786"
}
]
},
{
"id": "44783164",
"questions": [{
"id": "153745381",
"answers": [{
"text": "some_name"
}
]
}
]
},
{
"id": "44783183",
"questions": [{
"id": "153745436",
"answers": [{
"col_id": "1087201352",
"choice_id": "1087201369",
"row_id": "1087201362"
}, {
"col_id": "1087201353",
"choice_id": "1087201373",
"row_id": "1087201362"
}
]
}
]
}
],
"date_modified": "1970-01-17T19:07:34+00:00",
"response_status": "completed",
"id": "5007154325",
"collector_id": "50253586",
"recipient_id": "0",
"date_created": "1970-01-17T19:07:34+00:00",
"survey_id": "105723396"
}
],
"page": 1,
"links": {
"self": "https://api.surveymonkey.com/v3/surveys/123456/responses/bulk?page=1&per_page=2"
}
}
我想最后得到一个数据框,其中包含question_id,page_id,response_id和响应数据,如下所示:
choice_id col_id row_id text question_id page_id response_id
0 3057839051 NaN NaN NaN 319352786 103332310 5007154325
1 NaN NaN NaN some_name 153745381 44783164 5007154325
2 1087201369 1087201352 1087201362 NaN 153745436 44783183 5007154325
3 1087201373 1087201353 1087201362 NaN 153745436 44783183 5007154325
我可以通过运行以下代码(Python 3.6)来接近目标:
df = json_normalize(data=so_survey_responses['data'], record_path=['pages', 'questions'], meta='id', record_prefix ='question_')
print(df)
哪个返回:
question_answers question_id id
0 [{'choice_id': '3057839051'}] 319352786 5007154325
1 [{'text': 'some_name'}] 153745381 5007154325
2 [{'col_id': '1087201352', 'choice_id': '108720... 153745436 5007154325
但是,如果我尝试在更深层的嵌套中运行json_normalize并保留上述结果中的'question_id'数据,则我只能获取page_id值返回,而不能返回真正的question_id值:
answers_df = json_normalize(data=so_survey_responses['data'], record_path=['pages', 'questions', 'answers'], meta=['id', ['questions', 'id'], ['pages', 'id']])
print(answers_df)
返回:
choice_id col_id row_id text id questions.id pages.id
0 3057839051 NaN NaN NaN 5007154325 103332310 103332310
1 NaN NaN NaN some_name 5007154325 44783164 44783164
2 1087201369 1087201352 1087201362 NaN 5007154325 44783183 44783183
3 1087201373 1087201353 1087201362 NaN 5007154325 44783183 44783183
一个复杂的因素可能是上述所有内容(question_id,page_id,response_id)在JSON数据中都是“ id:”。
我确定这是可能的,但我无法到达那儿。如何执行此操作的任何示例?
其他上下文: 我正在尝试创建SurveyMonkey API response output的数据框。
我的长期目标是重新创建"all responses" excel sheet that their export service provides。
我计划通过设置响应数据框(上面)来实现此目的,然后使用.apply()将响应与其survey structure API output进行匹配。
我发现SurveyMonkey API在提供有用的输出方面相当乏味,但是我是Pandas的新手,所以它可能在我身上。
答案 0 :(得分:4)
您需要修改最后一个选项的meta
参数,并且,如果要按照您想要的方式重命名列,则可以使用rename
:
answers_df = json_normalize(data=so_survey_responses['data'],
record_path=['pages', 'questions', 'answers'],
meta=['id', ['pages', 'questions', 'id'], ['pages', 'id']])\
.rename(index=str,
columns={'id': 'response_id', 'pages.questions.id': 'question_id', 'pages.id': 'page_id'})
答案 1 :(得分:1)
无法使用json_normalize()
以完全通用的方式执行此操作。您可以使用record_path
和meta
参数来指示如何处理JSON。
但是,您可以使用flatten package来展平深度嵌套的JSON,然后将其转换为Pandas数据框。该页面包含example usage,介绍了如何将深度嵌套的JSON展平并转换为Pandas数据框。