我正在尝试从3级tf.float
张量x
和2级{{1}构建2级tf.float
张量y
}}张量,tf.int32
为:
z
我知道我需要将x[i][j] = y[i,z[i][j],j]
用作:
tf.gather_nd
其中
x = tf.gather_nd(y,indices)
但是,我在使用tensorflow函数将indices[i][j][:] = [i,z[i][j],j]
扩展到更高级别以构造z
时遇到麻烦。
我正在尝试以向量化形式维护这些操作。
简单地使用indices
作为
tf.stack
其中
indices = tf.stack([ii,z,jj],axis=-1)
和
ii[i,:] = i
?
答案 0 :(得分:1)
我认为这可以满足您的需求:
import tensorflow as tf
import numpy as np
# Inputs
y = tf.placeholder(tf.float32, [None, None, None])
z = tf.placeholder(tf.int32, [None, None])
# Make first and last indices
y_shape = tf.shape(y)
ii, jj = tf.meshgrid(tf.range(y_shape[0]), tf.range(y_shape[2]), indexing='ij')
# Make full ND index
idx = tf.stack([ii, z, jj], axis=-1)
# Gather result
x = tf.gather_nd(y, idx)
# Test
with tf.Session() as sess:
# Numbers from 0 to 11 in a (3, 4) matrix
a = np.arange(12).reshape((3, 4))
# Make Y with replicas of the matrix multiplied by 1, 10 and 100
y_val = np.stack([a, a * 10, a * 100], axis=1).astype(np.float32)
# Z will be a (3, 4) matrix of values 0, 1, 2, 0, 1, 2, ...
z_val = (a % 3).astype(np.int32)
# X should have numbers from 0 to 11 multiplied by 1, 10, 100, 1, 10, 100, ...
x_val = sess.run(x, feed_dict={y: y_val, z: z_val}) #, feed_dict={y: y_val, z: z_val})
print(x_val)
输出:
[[ 0. 10. 200. 3.]
[ 40. 500. 6. 70.]
[ 800. 9. 100. 1100.]]