保存的模型:LinearRegression似乎不起作用

时间:2018-11-06 21:40:17

标签: pyspark linear-regression apache-spark-2.1.1

我正在使用Azure,Spark版本为'2.1.1.2.6.2.3-1

我已使用以下命令保存了模型:

def fit_LR(training,testing,adl_root_path,location,modelName):
    training.cache()
    lr = LinearRegression(featuresCol = 'features',labelCol = 'ZZ_TIME',solver="auto",maxIter=100)
    lr_model = lr.fit(training)
    testing.cache()

    lr_outpath = adl_root_path + "Model/Sprint6Results/RUN/" + str(location) + str(modelName)

    lr_model_save = lr.write().overwrite().save(lr_outpath)

当我尝试使用模型并重新加载时

saved_model_path = adl_root_path + "Model/Sprint6Results/RUN/" + str(location) + str(modelName)
reloaded_model = LinearRegression.load(saved_model_path)
testing.cache()
reloaded_model.transform

我得到的错误是:

'LinearRegression' object has no attribute 'transform'
Traceback (most recent call last):
AttributeError: 'LinearRegression' object has no attribute 'transform'

我发现的所有示例似乎都告诉我,我应该能够使用已保存的模型中的新数据进行预测,但是我似乎缺少了一步。

1 个答案:

答案 0 :(得分:0)

有一个错误。我应该保存模型的拟合度,而不仅仅是线性回归函数

lr_model_save = lr_model.write().overwrite().save(lr_outpath