作为将来的毕业生,我正在执行第一个大数据任务,并且面临一个问题:
代码
//Loading my csv file here
val df = spark.read
.format("csv")
.option("header", "true")
.option("delimiter",";")
.load("/user/sfrtech/dilan/yesterdaycsv.csv")
.toDF()
//Select required columns
val formatedDf = df.select("`TcRun.ID`", "`Td.Name`", "`TcRun.Startdate`", "`TcRun.EndDate`", "`O.Sim.MsisdnVoice`", "`T.Sim.MsisdnVoice`", "`ErrorCause`")
//Sql on DF in order to get useful data
formatedDf.createOrReplaceTempView("yesterday")
val sqlDF = spark.sql("" +
" SELECT TcRun.Id, Td.Name, TcRun.Startdate, TcRun.EndDate, SUBSTR(O.Sim.MsisdnVoice,7,14) as MsisdnO, SUBSTR(T.Sim.MsisdnVoice,7,14) as MsisdnT", ErrorCause +
" FROM yesterday" +
" WHERE Td.Name like '%RING'" +
" AND MsisdnO is not null" +
" AND MsisdnT is not null" +
" AND ErrorCause = 'NoError'")
遇到错误
线程“ main”中的异常org.apache.spark.sql.AnalysisException:给定输入列,无法解析“
Td.Name
”:[TcRun.EndDate,TcRun.Startdate,O.Sim.MsisdnVoice,TcRun.ID ,Td.Name,T.Sim.MsisdnVoice,ErrorCause];第1行pos 177;
我猜问题出在我的包含“。”的列名中。但即使我使用反引号,我也不知道该如何解决
解决方案
val newColumns = Seq("id", "name", "startDate", "endDate", "msisdnO", "msisdnT", "error")
val dfRenamed = df.toDF(newColumns: _*)
dfRenamed.printSchema
// root
// |-- id: string (nullable = false)
// |-- name: string (nullable = false)
// |-- startDate: string (nullable = false)
// |-- endDate: string(nullable = false)
// |-- msisdnO: string (nullable = false)
// |-- msisdnT: string (nullable = false)
// |-- error: string (nullable = false)
答案 0 :(得分:2)
这行得通,
val sqlDF = spark.sql("" +
" SELECT 'TcRun.Id', 'Td.Name', 'TcRun.Startdate', 'TcRun.EndDate'", ErrorCause +
" FROM yesterday" +
" WHERE 'Td.Name' like '%RING'" +
" AND MsisdnO is not null" +
" AND MsisdnT is not null" +
" AND ErrorCause = 'NoError'")
当字段名称中包含.
字符时,请在select子句中使用引号。
答案 1 :(得分:0)
// Define column names of csv without "."
val schema = StructType(Array(
StructField("id", StringType, true),
StructField("name", StringType, true),
// etc. etc. )
// Load csv file without headers and specify your schema
val df = spark.read
.format("csv")
.option("header", "false")
.option("delimiter",";")
.schema(schema)
.load("/user/sfrtech/dilan/yesterdaycsv.csv")
.toDF()
然后根据需要选择列
df
.select ($"id", $"name", /*etc etc*/)
答案 2 :(得分:0)
对于包含。(点)的列名,可以使用`字符将列名括起来。
df.select('Td.Name
')
我遇到了类似的问题,这种解决方案对我来说很有效。