供稿类型是否是张量流的错误?

时间:2018-11-06 14:01:34

标签: python tensorflow

请参见代码段:

import tensorflow as tf
import numpy as np


z = tf.placeholder(tf.float32, [None, 100], name='z')
uc = tf.placeholder(tf.float32, [None, 2], name='uc')
sc = tf.placeholder(tf.int32, [None], name='sc')


sc_one_hot = tf.one_hot(sc, 10)
zc = tf.concat([z, uc, sc_one_hot], axis=1)


sample_z = np.random.normal(size=[32, 100])
sample_uc = np.random.uniform(0., 1., size=[32, 2])
sample_sc1 = np.random.randint(10, size=32)
sample_sc2 = np.mod(np.arange(32), 10)

with tf.Session() as sess:
    sess.run(zc, feed_dict={z: sample_z, uc: sample_uc, sc: sample_sc1})     # works well
    sess.run(zc, feed_dict={z: sample_z, uc: sample_uc, sc: sample_sc2})   # raises an error

sample_sc1sample_sc2均为ndarray,其中size的{​​{1}}和32的{​​{1}},以及所有数字它们的范围从dtypeint32

09,其中sc的{​​{1}}和tf.placeholder的{​​{1}}。 当我将dtype喂入tf.int32时,效果很好,但是当我将size喂入[None]时,它会提升sample_sc1

这是一个了不起的错误,这是张量流的错误吗?

0 个答案:

没有答案