考虑如下所示的数组。我有3套数组:
数组1:
C1 C2 C3
1 2 3
9 5 6
数组2:
C2 C3 C4
11 12 13
10 15 16
数组3:
C1 C4
111 112
110 115
我需要以下输出,输入我可以得到C1,...,C4的任何一个值,但是在加入时我需要获取正确的值,如果该值不存在,则应该为零。
预期输出:
C1 C2 C3 C4
1 2 3 0
9 5 6 0
0 11 12 13
0 10 15 16
111 0 0 112
110 0 0 115
我已经写了pyspark代码,但是我已经硬编码了新列及其RAW的值,我需要将以下代码转换为方法重载,以便可以将此脚本用作自动脚本。我只需要使用python / pyspark而不是熊猫。
import pyspark
from pyspark import SparkContext
from pyspark.sql.functions import lit
from pyspark.sql import SparkSession
sqlContext = pyspark.SQLContext(pyspark.SparkContext())
df01 = sqlContext.createDataFrame([(1, 2, 3), (9, 5, 6)], ("C1", "C2", "C3"))
df02 = sqlContext.createDataFrame([(11,12, 13), (10, 15, 16)], ("C2", "C3", "C4"))
df03 = sqlContext.createDataFrame([(111,112), (110, 115)], ("C1", "C4"))
df01_add = df01.withColumn("C4", lit(0)).select("c1","c2","c3","c4")
df02_add = df02.withColumn("C1", lit(0)).select("c1","c2","c3","c4")
df03_add = df03.withColumn("C2", lit(0)).withColumn("C3", lit(0)).select("c1","c2","c3","c4")
df_uni = df01_add.union(df02_add).union(df03_add)
df_uni.show()
方法重载示例:
class Student:
def ___Init__ (self,m1,m2):
self.m1 = m1
self.m2 = m2
def sum(self,c1=None,c2=None,c3=None,c4=None):
s = 0
if c1!= None and c2 != None and c3 != None:
s = c1+c2+c3
elif c1 != None and c2 != None:
s = c1+c2
else:
s = c1
return s
print(s1.sum(55,65,23))
答案 0 :(得分:0)
也许有很多更好的方法可以做到这一点,但是以下内容可能对将来的任何人都有用。
from pyspark.sql import SparkSession
from pyspark.sql.functions import lit
spark = SparkSession.builder\
.appName("DynamicFrame")\
.getOrCreate()
df01 = spark.createDataFrame([(1, 2, 3), (9, 5, 6)], ("C1", "C2", "C3"))
df02 = spark.createDataFrame([(11,12, 13), (10, 15, 16)], ("C2", "C3", "C4"))
df03 = spark.createDataFrame([(111,112), (110, 115)], ("C1", "C4"))
dataframes = [df01, df02, df03]
# Create a list of all the column names and sort them
cols = set()
for df in dataframes:
for x in df.columns:
cols.add(x)
cols = sorted(cols)
# Create a dictionary with all the dataframes
dfs = {}
for i, d in enumerate(dataframes):
new_name = 'df' + str(i) # New name for the key, the dataframe is the value
dfs[new_name] = d
# Loop through all column names. Add the missing columns to the dataframe (with value 0)
for x in cols:
if x not in d.columns:
dfs[new_name] = dfs[new_name].withColumn(x, lit(0))
dfs[new_name] = dfs[new_name].select(cols) # Use 'select' to get the columns sorted
# Now put it al together with a loop (union)
result = dfs['df0'] # Take the first dataframe, add the others to it
dfs_to_add = dfs.keys() # List of all the dataframes in the dictionary
dfs_to_add.remove('df0') # Remove the first one, because it is already in the result
for x in dfs_to_add:
result = result.union(dfs[x])
result.show()
输出:
+---+---+---+---+
| C1| C2| C3| C4|
+---+---+---+---+
| 1| 2| 3| 0|
| 9| 5| 6| 0|
| 0| 11| 12| 13|
| 0| 10| 15| 16|
|111| 0| 0|112|
|110| 0| 0|115|
+---+---+---+---+
答案 1 :(得分:0)
答案 2 :(得分:0)
我会尝试
df = df1.join(df2, ['each', 'shared', 'col], how='full')