用groupby的平均值填充na

时间:2018-11-05 23:27:13

标签: python pandas-groupby

我有一个数据框,如下所示:

    id  created_on  operation   property_type   place_with_parent_names     floor   rooms   expenses    price_aprox_local_currency  description     title   table_name  days_on_market
59176   172cdc2cdc7f59b9029c0cb758474b4eb39edcd0    2015-01-16  sell    house   |México|Nuevo León|Monterrey|   NaN     NaN     NaN     5735793.85  Casa en venta en Cumbres 2do. Sector. 3 habita...   Casa en Venta en Monterrey  201501  15
64175   f370552ac7e53400d0ffb7ba3624bacace9b5c37    2015-01-05  sell    house   |México|Baja California|Playas de Rosarito|     NaN     NaN     NaN     3893406.00  Casa con excelente terreno y amplios espacios,...   CASA EN VENTA ROSARITO  201501  26
64174   d388b6e389ec6124740fb515fbb950c7197b92c6    2015-01-05  sell    house   |México|San Luis Potosí|San Luis Potosí|    NaN     NaN     NaN     446984.59   Excelente ubicacióna 6 minutos de Blvd. Rio Sa...   PROYECTO: Villas de la Victoria, una PLANTA, ...    201501  26

我想按place_with_parent_names列进行分组,并且还要使用每个此类组的平均值来填写我的楼层,房间,费用和price_aprox_local_currency列中的NA值

到目前为止,我有:

single_price_listings2 = single_price_listings.groupby(["place_with_parent_names"])["floor", "rooms", "expenses", "price_aprox_local_currency", "days_on_market"].mean().transform(lambda x: x.fillna(x.mean()))

我将收到以下消息:

floor   rooms   expenses    price_aprox_local_currency  days_on_market
59176   4.673260    3.123693    1034.293750     5.735794e+06    15
64175   2.250000    NaN     235.000000  3.893406e+06    26
64174   2.240409    2.992894    1010.000000     4.469846e+05    26

我认为它可能在可能的情况下填充了NaN值,但是没有返回groupby()。mean()对象,如果我尝试在末尾抛出.mean(),我会得到提示单行(我想这是整个列中每一列的平均值)。

0 个答案:

没有答案