我有一个带有81个数字的1D数组,每2.5米深度对应于81个温度,我需要将其内插到一个3D数组网格中,该数组在z-dir中有100点,在x-dir中有6点,而在599点在y-dir。我创建一维值的功能是:
zz = np.arange(-200,0.1,2.5)
def grid_function(x, ABath=-0.2, BBath=0.1, CBath=50.,DBath=10.):
"""This function creates a theoretical grid"""
from numpy import tanh, arange
ans = ABath * (tanh(BBath * (-x - CBath))) + DBath
return ans
temp = grid_function(zz)
我不知道我的要求是否清楚,但是如果有人知道我的方式,我将非常感激。
此致
答案 0 :(得分:1)
您应该能够从现有的temp
1D数组中构造3D数组,如下所示:
zz = np.arange(-200,0.1,2.5)
def grid_function(x, ABath=-0.2, BBath=0.1, CBath=50.,DBath=10.):
"""This function creates a theoretical grid"""
from numpy import tanh, arange
ans = ABath * (tanh(BBath * (-x - CBath))) + DBath
return ans
temp = grid_function(zz)
# Construct 1D 100-element array with z-coordinates
z_new = np.linspace(zz[0], zz[-1], 100)
# Interpolate 1D temperatures at new set of 100 z-coordinates
temp_1d_new = np.interp(z_new, zz, temp)
# Replicate 1D temperatures into two additional dimensions
temp_3d_new = np.tile(temp_1d_new, (6, 599, 1))
不过,您也可以采用更直接的方法,并立即从具有所需100个元素的z坐标一维数组开始(即跳过插值步骤)。像这样:
def grid_function(x, ABath=-0.2, BBath=0.1, CBath=50.,DBath=10.):
"""This function creates a theoretical grid"""
from numpy import tanh, arange
ans = ABath * (tanh(BBath * (-x - CBath))) + DBath
return ans
# Create 1D arrays with x-coordinates, y-coordinates and z-coordinates
x = np.linspace(0., 100., 6)
y = np.linspace(0., 100., 599)
z = np.linspace(-200., 0., 100)
# Create 3D meshgrids for x-coordinates, y-coordinates and z-coordinates
(xx, yy, zz) = np.meshgrid(x, y, z)
# Calculate temperatures 3D array from z-coordinates 3D array
temp = grid_function(zz)
place import statements always at the top of your code file被认为是一种很好的做法。