我有一个代码,在其中对值的前几行进行检查,以计算coverage值。我有以下代码示例:
library(data.table)
df <- data.frame(
dept = c(rep('FIREDEPT', 5), rep('WATERDEPT', 5)),
month = 201808:201812,
initial_stock = sample(75884:85347, 10),
variable_predicted = sample(50000:100000, 10))
df <- mutate(df, calculation = ifelse(initial_stock <= (shift(variable_predicted, type="lead", fill = 0)
+ shift(variable_predicted, type="lead", fill = 0, n = 2)
+ shift(variable_predicted, type="lead", fill = 0, n = 3)),
(3 + (initial_stock
- shift(variable_predicted, type="lead", fill = 0)
- shift(variable_predicted, type="lead", fill = 0, n = 2)
) / shift(variable_predicted, type="lead", fill = 0, n = 3)) * 30,
0))
问题是,主导价值要大得多,我必须通过一系列ifelses来实现多个公式。我有办法得到这部分的结果吗?
(shift(variable_predicted, type="lead", fill = 0)
+ shift(variable_predicted, type="lead", fill = 0, n = 2)
+ shift(variable_predicted, type="lead", fill = 0, n = 3)),
不使用一系列班次吗?
答案 0 :(得分:2)
shift
是向量化的,因此您可以为其提供n
的向量,然后将结果与Reduce('+', ...)
a <-
with(df,
(shift(variable_predicted, type="lead", fill = 0)
+ shift(variable_predicted, type="lead", fill = 0, n = 2)
+ shift(variable_predicted, type="lead", fill = 0, n = 3)))
b <-
with(df,
Reduce(`+`, shift(variable_predicted, n = 1:3, fill = 0, type = 'lead')))
identical(a, b)
# [1] TRUE
您也可以使用zoo:rollsum
library(zoo)
d <-
with(df,
rollsum(c(variable_predicted[-1], rep(0, 3)), 3))
all.equal(a, d)
# [1] TRUE