我编写的代码采用数组的元素,并遍历数组以提供所有排列。但是我需要它仅显示一定数量的排列:
最后的代码是仅给出9个元素的6个排列(换句话说,打印总362880个输出中的前60480个排列)。为简单起见,我正在处理数组中的4个元素,并获得了所有24种排列以进行打印。但是我需要代码来处理任意数量的排列。例如,如果我需要它打印出1个排列,则代码应打印出前4种排列-ABCD,ABDC,ACBD和ACDB。我不确定如何解决这个问题。
public static void main(String[] args) {
// TODO Auto-generated method stub
String[] myArray = {"A","B","C", "D"};
int size = myArray.length;
permutation(myArray, 0, size-1);
// Calculate Permutations
int n=size;
int r=6; // subject to change
int p = n - r;
int total=1;
int total2=1;
int total3=0;
for (int top=n; top>0; top--)
{
total *= top;
}
if ((n-r<0))
{
System.out.println("r value cannot be greater than array size");
total3=0;
}
else
{
for (int bot=1; bot<=p; bot++)
{
if (p==0) // should be -- else if (p==0) -- after correction
{
total2=1;
}
else
{
total2 *= bot;
}
}
total3 = total/total2;
}
System.out.printf("%d permutations of %d elements = %d\n",r,n,total3);
// end calculation
}
// end main
// print array
public static void prtArray(String[] myArray, int size)
{
for(int i=0; i<size; i++)
{
System.out.printf("%s", myArray[i]);
}
System.out.println();
}
// swap elements
public static void swap(String[] myArray, int i, int j) {
String temp;
temp = myArray[i];
myArray[i]=myArray[j];
myArray[j]=temp;
}
// permutation
private static void permutation(String[] myArray, int b, int e)
{
if (b == e)
prtArray(myArray, e+1); // accounts for array of size 1
else
{
for(int i = b; i <= e; i++)
{
swap(myArray, i, b);
permutation(myArray, b+1, e);
swap(myArray, i, b);
}
}
}
}
答案 0 :(得分:0)
我假设您不希望在排列中重复元素。 例如。
如果输入数组为{1, 2, 3, 4}
,则对于长度3:123
,124
等是有效排列,但122
或111
不是有效的排列。 / p>
为避免选择已被选择的元素,我们需要在递归中传递一个visited
数组。
public class Main {
// Maintain a global counter. After finding a permutation, increment this.
private static int count = 0;
// pos is the current index, and K is the length of permutation you want to print, and N is the number of permutation you want to print.
private static void printPermutations(int[] arr, int[] visited, int pos, int K, int N, String str) {
// We have already found N number of permutations. We don't need anymore. So just return.
if (count == N) {
return;
}
if (pos == K) {
System.out.println(str);
count++; // we have found a valid permutation, increment counter.
return;
}
for (int i = 0; i < arr.length; i++) {
// Only recur if the ith element is not visited.
if (visited[i] == 0) {
// mark ith element as visited.
visited[i] = 1;
printPermutations(arr, visited, pos + 1, K, N, str + arr[i]);
// unmark ith element as visited.
visited[i] = 0;
}
}
}
public static void main(String[] args) {
int[] arr = {1, 2, 3, 4};
int[] visited = {0, 0, 0, 0}; // same as size of input array.
count = 0; // make sure to reset this counter everytime you call printPermutations.
// let's print first 4 permutations of length 3.
printPermutations(arr, visited, 0, 3, 4, "");
}
}
输出:
对于N = 4和K = 3(即长度3的前4个排列):
printPermutations(arr, visited, 0, 3, 4, "");
123
124
132
134
对于N = 4和K = 4(即长度为4的前4个排列):
printPermutations(arr, visited, 0, 4, 4, "");
1234
1243
1324
1342