我有以下示例数据框:
<h1 class="title">New Contract</h1>
<form class="grid-wrapper" #f="ngForm">
<div *ngIf="edit" class="form-group id">
<label for="id">Transaction ID</label>
<input id="id" type="text" name="id" class="form-control" disabled [(ngModel)]="contract.id">
</div>
<div class="form-group name">
<label for="name">Contract name</label>
<input id="name" type="text" name="name" class="form-control" required [(ngModel)]="contract.name">
</div>
<div class="form-group type">
<div class="input-group-prepend">
<label for="type">Merchant</label>
</div>
<select class="custom-select" name="type" [(ngModel)]="contract.merchant_id" id="merchant_id" required>
<option selected>Please Select...</option>
<option [value]="merchant.id" *ngFor="let merchant of merchants">{{ merchant.name }}</option>
</select>
</div>
<div class="btn-row">
<button class="btn btn-primary" [disabled]="f.invalid" (click)="submit()">Submit</button>
<button class="btn btn-secondary" (click)="clear()">Clear</button>
</div>
</form>
我想根据与df <- structure(list(PC1 = c(1.08553700088979, 3.0948497436612,
-0.997456334603069,
1.41407630966724, 0.287288941434462, -0.304145457046063, 0.0540331738096902,
0.276994168448363, -0.178887591197422, 1.03793040779083, -0.964485366085487,
0.781189811085296, -0.360466840689429, -2.25639643892807,
-0.688600791894463,
1.05031184739218, 3.30341296998208, 0.265388275042453, 0.187534314978584,
2.58042550274586, 0.564788667016578), PC2 = c(-0.560967999647005,
0.856204454728214, 0.720760276550347, 1.75595629874967, -0.707834522512927,
0.891530126176209, 0.631768747109977, -0.845237959897621,
-0.412613566320007,
-0.159362864836617, -0.569253016944671, -0.0181844049717689,
-0.0218393445421908, 1.86197538876216, -0.263011388351398,
0.0582985416071711,
1.7585346351499, 1.74997701136744, 0.723398654405442, -0.482322211724498,
-0.240535930597667), PC3 = c(0.36287528575844, -2.01764685704277,
-0.408829080806452, 0.97914722241214, -0.665892667247256,
-0.242401102421392,
0.497651711177106, 1.26726883331746, 1.27889899812577, 0.54485872382572,
0.191895005811088, 0.381351220912963, -0.613213748902156,
0.0685178101199476,
0.532000414181072, 1.19230092657081, 1.48731243525717, 1.16110479193897,
0.486880645956999, -2.69479147849705, 0.169949194117217)), row.names = c(NA,
-21L), class = c("tbl_df", "tbl", "data.frame"))
相关的以下条件集过滤df
的行,这些条件作为另一个数据帧PC1
的行给出:
f1
PC2的过滤应根据f1 <- structure(list(xmin = c(-3.59811981997059, -3.10182743100913,
-2.8536812365284, 2.8536812365284, 3.59811981997058), xmax =
c(-3.34997362548985,
-2.8536812365284, -2.60553504204766, 3.10182743100912, 3.84626601445132
)), row.names = c(NA, -5L), class = c("tbl_df", "tbl", "data.frame"
))
进行
f2
换句话说,数据帧f2 <- structure(list(xmin = c(-2.56910324629848, -2.37879930212822,
2.56910324629848, 2.949711134639), xmax = c(-2.37879930212822,
-2.18849535795797, 2.75940719046874, 3.14001507880926)), row.names = c(NA,
-4L), class = c("tbl_df", "tbl", "data.frame"))
的列PC1
中的值必须介于-3.6和-3.35之间,或介于-3.1和-2.85之间,依此类推,并且df
的值必须介于-2.57和-2.38之间,依此类推。对于PC2
的每一列,我都有一个数据框,它告诉我如何过滤相应的列。
我当然可以写出条件:
df
,然后对每一列重复此操作。但是最终我将有很多条件,这是不实际的。
是否有更短,更有效的方法?
谢谢!
答案 0 :(得分:3)
使此功能生效的一种方法是使用glue
,eval
和parse
函数。
我创建了一个函数(my_conditions),因此可以更轻松地使用它。更改列名称/条件表仍需要进行一些手动操作,但操作不多,而且可能也可以自动化。该函数调用glue
包。
my_conditions <- function(column_name, condition_table){
# create conditions
conditions <- glue::glue("{column_name} > {condition_table$xmin} & {column_name} < {condition_table$xmax}")
# collapse into 1 statement using " | " for or statement
conditions <- paste0(conditions, collapse = " | ")
return(conditions)
}
调用my_conditions("PC1", f1)
的结果是一个长字符串,具有表f1的所有条件。
[1] "PC1 > -3.59811981997059 & PC1 < -3.34997362548985 | PC1 > -3.10182743100913 & PC1 < -2.8536812365284 | PC1 > -2.8536812365284 & PC1 < -2.60553504204766 | PC1 > 2.8536812365284 & PC1 < 3.10182743100912 | PC1 > 3.59811981997058 & PC1 < 3.84626601445132"
使用eval
和parse
解析和评估代码中的条件。
使用dplyr:
df %>%
filter(eval(parse(text = my_conditions("PC1", f1))))
# A tibble: 1 x 3
PC1 PC2 PC3
<dbl> <dbl> <dbl>
1 3.09 0.856 -2.02
在基础R中进行过滤:只需将表名添加到列的前面
df[eval(parse(text = my_conditions("df$PC1", f1))), ]
# A tibble: 1 x 3
PC1 PC2 PC3
<dbl> <dbl> <dbl>
1 3.09 0.856 -2.02