我有一个Dask DataFrame,我想用它来拟合Keras自动编码器模型:
DataFrame:
import dask.dataframe as dd
input_df = dd.read_csv(file_path)
input_df.dtypes
_2 float64 _3 float64 _4 float64 _5 float64 ...
Keras模型:
autoencoder = Sequential()
autoencoder.add(Dense(dense[0], input_shape=(dense[0],), activation = 'relu' ))
autoencoder.add(Dense(dense[1], activation = 'relu' ))
autoencoder.add(Dense(dense[2], activation = 'relu' ))
autoencoder.add(Dense(dense[3], activation = 'relu' ))
autoencoder.add(Dense(dense[0], activation = 'relu' ))
autoencoder.compile(loss='mse',
optimizer='adam',
metrics=['mse'])
当我通过DataFrame进行拟合时:
autoencoder.fit(input_df, input_df,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_split = val_split)
我得到了错误:
TypeError Traceback (most recent call last)
<ipython-input-23-d0480d8a460d> in <module>()
3 epochs=epochs,
4 verbose=1,
----> 5 validation_split = val_split)
~/anaconda3/envs/py36/lib/python3.6/site-packages/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs)
950 sample_weight=sample_weight,
951 class_weight=class_weight,
--> 952 batch_size=batch_size)
953 # Prepare validation data.
954 do_validation = False
~/anaconda3/envs/py36/lib/python3.6/site-packages/keras/engine/training.py in _standardize_user_data(self, x, y, sample_weight, class_weight, check_array_lengths, batch_size)
799 for (ref, sw, cw, mode) in
800 zip(y, sample_weights, class_weights,
--> 801 feed_sample_weight_modes)
802 ]
803 # Check that all arrays have the same length.
~/anaconda3/envs/py36/lib/python3.6/site-packages/keras/engine/training.py in <listcomp>(.0)
797 sample_weights = [
798 standardize_weights(ref, sw, cw, mode)
--> 799 for (ref, sw, cw, mode) in
800 zip(y, sample_weights, class_weights,
801 feed_sample_weight_modes)
~/anaconda3/envs/py36/lib/python3.6/site-packages/keras/engine/training_utils.py in standardize_weights(y, sample_weight, class_weight, sample_weight_mode)
522 else:
523 if sample_weight_mode is None:
--> 524 return np.ones((y.shape[0],), dtype=K.floatx())
525 else:
526 return np.ones((y.shape[0], y.shape[1]), dtype=K.floatx())
~/anaconda3/envs/py36/lib/python3.6/site-packages/numpy/core/numeric.py in ones(shape, dtype, order)
201
202 """
--> 203 a = empty(shape, dtype, order)
204 multiarray.copyto(a, 1, casting='unsafe')
205 return a
TypeError: 'float' object cannot be interpreted as an integer
将感谢您的帮助!谢谢!