我正在学习情感分析,我有一个评价数据框架,必须对给定的单词列表进行评估,并获得分配给这些单词的权重。不幸的是,当我尝试拟合回归时,出现以下错误: “ ValueError:找到样本数量不一致的输入变量:[11,133401]”
我想念什么? CSV file
import pandas
import sklearn
import numpy as np
products = pandas.read_csv('amazon_baby.csv')
selected_words=["awesome", "great", "fantastic", "amazing", "love", "horrible", "bad", "terrible", "awful", "wow", "hate"]
#ignore all 3* reviews
products = products[products['rating'] != 3]
#positive sentiment = 4* or 5* reviews
products['sentiment'] = products['rating'] >=4
#create a separate column for each word
for word in selected_words:
products[word]=[len(re.findall(word,x)) for x in products['review'].tolist()]
# Define X and y
X = products[selected_words]
y = products['sentiment']
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
vect = CountVectorizer()
vect.fit(X_train)
X_train_dtm = vect.transform(X_train)
X_test_dtm = vect.transform(X_test)
from sklearn.linear_model import LogisticRegression
logreg = LogisticRegression()
logreg.fit(X_train_dtm, y_train) #here is where I get the error
答案 0 :(得分:1)
CountVectorizer()
期望字符串可迭代,并返回表示单词计数的向量。您已经使用for循环实现了此功能,现在尝试使CountVectorizer()
适应所选单词的计数。
假设您只想将所选单词用作功能
logreg.fit(X_train, y_train)
没有转换就可以了。
或者,如果您想使用所有单词作为功能,则可以更改X
以包括完整的评论
X = products['review'].astype(str)
然后适合CountVectorizer()
然后使用
logreg.fit(X_train_dtm, y_train)