我已经使用model.save('filename.h5')
训练并保存了模型。它可以进行预测,但是当我将相同的模型加载到flask_app中并尝试对其进行预测时,我会遇到ValueError:
相关内容
The data type of the acquired data from the post call: <class 'str'>
Preprocessing
Pre-processing complete
Data type of the input data: <class 'numpy.ndarray'>
Predicting for requirement:
[2018-11-01 15:34:56,261] ERROR in app: Exception on /predict [POST]
Traceback (most recent call last):
File "C:\ProgramData\Anaconda3\lib\site-packages\flask\app.py", line 2292, in wsgi_app
response = self.full_dispatch_request()
File "C:\ProgramData\Anaconda3\lib\site-packages\flask\app.py", line 1815, in full_dispatch_request
rv = self.handle_user_exception(e)
File "C:\ProgramData\Anaconda3\lib\site-packages\flask_cors\extension.py", line 161, in wrapped_function
return cors_after_request(app.make_response(f(*args, **kwargs)))
File "C:\ProgramData\Anaconda3\lib\site-packages\flask\app.py", line 1718, in handle_user_exception
reraise(exc_type, exc_value, tb)
File "C:\ProgramData\Anaconda3\lib\site-packages\flask\_compat.py", line 35, in reraise
raise value
File "C:\ProgramData\Anaconda3\lib\site-packages\flask\app.py", line 1813, in full_dispatch_request
rv = self.dispatch_request()
File "C:\ProgramData\Anaconda3\lib\site-packages\flask\app.py", line 1799, in dispatch_request
return self.view_functions[rule.endpoint](**req.view_args)
File "C:\Users\singroha\PycharmProjects\smart_classification_ML_model\flask_app\predict_app.py", line 99, in predict
prediction = requirement_model.predict(r_predict_text)
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\engine\training.py", line 1164, in predict
self._make_predict_function()
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\engine\training.py", line 554, in _make_predict_function
**kwargs)
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py", line 2744, in function
return Function(inputs, outputs, updates=updates, **kwargs)
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py", line 2546, in __init__
with tf.control_dependencies(self.outputs):
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 5002, in control_dependencies
return get_default_graph().control_dependencies(control_inputs)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 4541, in control_dependencies
c = self.as_graph_element(c)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 3488, in as_graph_element
return self._as_graph_element_locked(obj, allow_tensor, allow_operation)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 3567, in _as_graph_element_locked
raise ValueError("Tensor %s is not an element of this graph." % obj)
ValueError: Tensor Tensor("dense_7/Softmax:0", shape=(?, 2), dtype=float32) is not an element of this graph.
事物的流向:
我的想法和所做的事情:
我尝试使用_make_predict_function并尝试了一些我在互联网上找到的东西,但似乎对我没有用。非常感谢对此有任何见解。谢谢
以下是flask_app的预测函数:
@app.route("/predict", methods=["POST"])
# @cross_origin(origin='localhost',headers=['Content- Type','Authorization'])
def predict():
post_message = request.get_json(force=True)
# Logging
print('Data message received from the client', post_message)
print("\nThe data type of the acquired data from the post call:", type(post_message))
requirement = []
requirement.append(post_message)
# Preprocessing data
r_predict_text, (sent_text, s_predict_text) = preprocess_data(requirement)
# print("\n\n printing preprocessed data:")
# print(r_predict_text)
# Saving the preprocessing data for varification
# with open('text_req.pickle', 'wb') as pickle_file:
# pickle.dump(r_predict_text, pickle_file, protocol=pickle.HIGHEST_PROTOCOL)
print('Data type of the input data:', type(r_predict_text))
print('Predicting for requirement:')
# Everything goes down at this point after receiving request
prediction = requirement_model.predict(r_predict_text)
# Ignore this, for now, I was trying to see if the response gets send back if take out the predict function call
prediction = 'SMART'
response = {
'prediction': {
'SMART': prediction
}
}
print('sending response to the client')
return jsonify(response)