我在同一数据框中有两个数据集,每个数据集都显示了一个公司列表。一个数据集来自2017年,另一个来自今年。我正在尝试使两个公司的数据集相互匹配,并且认为模糊匹配(FuzzyWuzzy)是做到这一点的最佳方法。使用部分比例,我想简单地列出具有如下所列值的列:去年公司的名称,最高模糊匹配率,今年公司与该最高分数相关联。原始数据帧已被赋予变量“ data”,其去年公司名称位于“公司”列下,而今年公司名称位于“公司名称”列下。为了完成此任务,我尝试使用extractOne模糊匹配过程创建一个函数,然后将该函数应用于数据框中的每个值/行。然后将结果添加到我的原始数据框中。
这是下面的代码:
names_array=[]
ratio_array=[]
def match_names(last_year,this_year):
for row in last_year:
x=process.extractOne(row,this_year)
names_array.append(x[0])
ratio_array.append(x[1])
return names_array,ratio_array
#last year company names dataset
last_year=data['Company'].dropna().values
#this year companydataset
this_year=data['Company name'].values
name_match,ratio_match=match_names(last_year,this_year)
data['this_year']=pd.Series(name_match)
data['match_rating']=pd.Series(ratio_match)
data.to_csv("test.csv")
但是,每次执行这部分代码时,我创建的两个添加的列都不会显示在csv中。实际上,尽管计算机显示了最近创建的“ test.csv”数据帧,但它与以前的数据帧相同。如果有人可以指出问题或以任何方式帮助我,将不胜感激。
编辑(数据框预览):
Company Company name
0 BODYPHLO SPORTIQUE NaN
1 JOSEPH A PERRY NaN
2 PCH RESORT TENNIS SHOP NaN
3 GREYSTONE GOLF CLUB INC. NaN
4 MUSGROVE COUNTRY CLUB NaN
5 CITY OF PELHAM RACQUET CLUB NaN
6 NORTHRIVER YACHT CLUB NaN
7 LAKE FOREST NaN
8 TNL TENNIS PRO SHOP NaN
9 SOUTHERN ATHLETIC CLUB NaN
10 ORANGE BEACH TENNIS CENTER NaN
然后在“公司”条目(去年的公司数据集)结束后,“公司名称”列(今年的公司数据集)如下所示:
4168 NaN LEWIS TENNIS
4169 NaN CHUCKS PRO SHOP AT
4170 NaN CHUCK KINYON
4171 NaN LAKE COUNTRY RACQUET CLUB
4172 NaN SPORTS ACADEMY & RAC CLUB
答案 0 :(得分:1)
您的数据帧结构很奇怪,考虑到一列仅从另一端开始,但是我们可以使其工作。让我们为您提供的data
使用以下示例数据框:
Company Company name
0 BODYPHLO SPORTIQUE NaN
1 JOSEPH A PERRY NaN
2 PCH RESORT TENNIS SHOP NaN
3 GREYSTONE GOLF CLUB INC. NaN
4 MUSGROVE COUNTRY CLUB NaN
5 CITY OF PELHAM RACQUET CLUB NaN
6 NORTHRIVER YACHT CLUB NaN
7 LAKE FOREST NaN
8 TNL TENNIS PRO SHOP NaN
9 SOUTHERN ATHLETIC CLUB NaN
10 ORANGE BEACH TENNIS CENTER NaN
11 NaN LEWIS TENNIS
12 NaN CHUCKS PRO SHOP AT
13 NaN CHUCK KINYON
14 NaN LAKE COUNTRY RACQUET CLUB
15 NaN SPORTS ACADEMY & RAC CLUB
然后执行您的匹配:
import pandas as pd
from fuzzywuzzy import process, fuzz
known_list = data['Company name'].dropna()
def find_match(x):
match = process.extractOne(x['Company'], known_list, scorer=fuzz.partial_token_sort_ratio)
return pd.Series([match[0], match[1]])
data[['this year','match_rating']] = data.dropna(subset=['Company']).apply(find_match, axis=1, result_type='expand')
收益:
Company Company name this year \
0 BODYPHLO SPORTIQUE NaN SPORTS ACADEMY & RAC CLUB
1 JOSEPH A PERRY NaN CHUCKS PRO SHOP AT
2 PCH RESORT TENNIS SHOP NaN LEWIS TENNIS
3 GREYSTONE GOLF CLUB INC. NaN LAKE COUNTRY RACQUET CLUB
4 MUSGROVE COUNTRY CLUB NaN LAKE COUNTRY RACQUET CLUB
5 CITY OF PELHAM RACQUET CLUB NaN LAKE COUNTRY RACQUET CLUB
6 NORTHRIVER YACHT CLUB NaN LAKE COUNTRY RACQUET CLUB
7 LAKE FOREST NaN LAKE COUNTRY RACQUET CLUB
8 TNL TENNIS PRO SHOP NaN LEWIS TENNIS
9 SOUTHERN ATHLETIC CLUB NaN SPORTS ACADEMY & RAC CLUB
10 ORANGE BEACH TENNIS CENTER NaN LEWIS TENNIS
match_rating
0 47.0
1 43.0
2 67.0
3 43.0
4 67.0
5 72.0
6 48.0
7 64.0
8 67.0
9 50.0
10 67.0